На пост председателя школьного совета претендовали два кандидата. в голосовании приняли участие 99 человек. голоса между кандидатами распределились в отношении 2: 9. сколько голосов получил победитель?
Ну, смотрите. Оба они лжецами быть не могут - иначе бы сказанные ими числа отличались на 10 или не отличались бы вовсе. Теперь надо выяснить кто из них кто. Допустим, первый студент - правдолюб. Тогда лжецов получится 504, а правдолюбов 506 (включая его самого). Тогда второй студент будет лжецом, а значит данные должны отличаться на 5 человек - должно быть 500 лжецов не считая его и 501 правдолюб (или же 509 лжецов не считая его и 510 правдолюбов). Как видно, цифры не совпадают с условиями задачи. А это значит, что предположение не верно и первый студент - лжец, а второй - правдолюб. Проверим: Если первый студент лжец, то по его словам лжецов здесь 505, как и правдолюбов. Значит на самом деле число лжецов 500 или 510, и правдолюбов 500 или 510. Второй студент - правдолюб, он говорит, что в аудитории 500 лжецов и 500 правдолюбов (считая его). Совпало. ответ: первый студент - лжец, а второй правдолюб.
При делении многочлена третьей степени на двучлен (х-1) в частном должны получить многочлен второй степени, коэффициенты которого неизвестны и остаток 9. В виде равенства это можно записать так: ах³-х²+(а+1)х+5=(х-1)·(ax²+bx+c)+9 Раскроем скобки справа и приравняем многочлены. Два многочлена равны, если у них степени равны и коэффициенты при одинаковых степенях переменной равны ах³-х²+(а+1)х+5=ax³+bx²+cх-ах²-bx-c+9 ах³-х²+(а+1)х+5=ax³+(b-a)x²+(c-b)x-c+9 ⇒ b-a=-1 c-b=a+1 5=-c+9 c=9-5=4 Подставляем с=4 во второе равенство 4-b=a+1 b-a=-1 Решаем систему двух уравнений выражаем а из первого a=3-b и подставляем во второе b-(3-b)=-1 ⇒2b=2 ⇒ b=1 a=3-b=3-1=2 ответ. При а=2