1/999 ( одна девятсот девяносто девятая
1) Представим одночлен 5а в виде суммы одночленов: 5а=4а+а.
2) Произведем группировку.
3) Вынесем общий множитель за скобки.
4a²-5a+1 =
= 4a²-(4a + а) +1 =
= 4a²- 4a - а +1 =
= (4a²- 4a) - (а - 1) =
= 4а·(а- 1) - (а - 1) =
= (а-1)·(4а-1)
Вопрос: А каким образом из 4а·(а- 1) - (а - 1) получилось (а-1)·(4а-1)?
4а·(а- 1) - (а - 1) = 4а·(а- 1) - 1·(а - 1) =
выделенные одинаковые скобки (а-1) это и есть общий множитель, его запишем в первых скобках, а во вторых скобках запишем то, что подчеркнуто 4а и -1
= 4а·(а- 1) - 1·(а - 1) = (а-1)·(4а-1)
1) Найдем нулю нашей функции. Для чего разложим на множители формулу, которой она задана, с введения новых вс членов.
Из следует:
а) , отсюда
- нуль функции
б) ,
, отсюда
,
- нули функции
Итак, функция обращается в нуль в точках
,
и
2) Найдем возможные точки экстремума нашей функции. Для чего найдем производную функции :
-----(1)
Разложим квадратный трехчлен, стоящий в правой части (1), на целые множители. Для чего найдем дискриминант этого квадратного трехчлена:
, отсюда найдем корни:
---------(2)
Тогда с (2) выражение (1) примет вид метода интервалов найдем промежутки, на которых производная функции принимает положительные и отрицательные значения:
а) при x принадлежащем объединению промежутков
(-бесконечности; 1/3)U(5; +бесконечности )
б) при x принадлежащем промежутку (1/3; 5)
Известно, что промежутки, на которых производная функции положительна, являются промежутками возрастания функции!
На промежутках, где , функция убывает!
Поскольку при переходе через точку x=1/3 производная меняет знак с плюса на минус, то эта точка - точка максимума
Поскольку при переходе через точку x=5 производная меняет знак с минуса на плюс, то эта точка - точка минимума. Итак,
1/300 000 примерно