Пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
раскладываем на множители числитель:
х = 1 обнуляет многочлен, следовательно является его корнем => делим х^3-6x^2+11x-6 на (х - 1): (х^3-6x^2+11x-6) : (х - 1) =
= х^2 - 5x + 6
по обратной теореме Виетта находим корни уравнения х^2 - 5x + 6 = 0 => x1 = 2, x2 = 3
значит (х^3-6x^2+11x-6) = (х - 1) (х - 2)(х - 3)
раскладываем на множители знаменатель
x^2-3x+2 =0
по обратной теореме Виетта => x1 = 1, x2 = 2
значит x^2-3x+2 = (х - 1)(х - 2)
тогда предел примет вид:
lim [(х^3-6x^2+11x-6)/(x^2-3x+2 )] = lim[(х - 1)(х - 2)(х - 3)/(х - 1) (х - 2)] = lim(х - 3) = {1 - 3} = 2
PS: к пределам нужно не забыть подписать х ->1