наибольшее значение многочлена равно 5.
Объяснение:
- 9х² + 12х + 1
- (9х² - 12х - 1) = - ((3х)² - 2·3х·2 + 2² - 5) = -((3х - 2)² - 5) = - (3х - 2)² + 5.
Второе слагаемое 5 неизменно, поэтому наибольшего значения вся сумма достигнет тогда, когда наибольшим будет первое слагаемое - (3х - 2)².
(3х - 2)² ≥ 0 при любом действительном значении х, тогда
- (3х - 2)² ≤ 0, а значит наибольшим его значением является 0.
Получили, что в этом случае сумма будет равной 0 + 5 = 5, и это и есть наибольшее значение многочлена 1+12x-9x².
Рассмотрим функцию у = 1+12x-9x².
Она квадратичная, графиком является парабола. Так как а = - 9, а < 0, то ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы.
х вершины = -b/(2a) = -12/(-18) = 2/3.
у вершины = 1 + 12·2/3 - 9·4/9 = 1 + 8 - 4 = 5.
наибольшее значение многочлена равно 5.
Объяснение:
- 9х² + 12х + 1
- (9х² - 12х - 1) = - ((3х)² - 2·3х·2 + 2² - 5) = -((3х - 2)² - 5) = - (3х - 2)² + 5.
Второе слагаемое 5 неизменно, поэтому наибольшего значения вся сумма достигнет тогда, когда наибольшим будет первое слагаемое - (3х - 2)².
(3х - 2)² ≥ 0 при любом действительном значении х, тогда
- (3х - 2)² ≤ 0, а значит наибольшим его значением является 0.
Получили, что в этом случае сумма будет равной 0 + 5 = 5, и это и есть наибольшее значение многочлена 1+12x-9x².
Рассмотрим функцию у = 1+12x-9x².
Она квадратичная, графиком является парабола. Так как а = - 9, а < 0, то ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы.
х вершины = -b/(2a) = -12/(-18) = 2/3.
у вершины = 1 + 12·2/3 - 9·4/9 = 1 + 8 - 4 = 5.
Резервуар они будут соответсвенно заполнять
за 105/Х и 105/(Х+16)
105/Х=105/(Х+16)+4
(105(Х+16)-105х)/[х(Х+16)]=4
1680=4(х^2+16х)
Х^2+16х-420=0
D=256+1680=1936=44^2
Х1=(-16-44)/2=-30
Х2=(-16+44)/2=28/2=14
-30 не подходит, значит Х=14