х∈ [-2, 4)
Объяснение:
Решить систему неравенств:
2х+4>=0
x²-x-12<0
2x>= -4
x>= -2
x∈[-2, +∞) - решение первого неравенства.
x²-x-12=0
х₁,₂=(1±√1-48)/2
х₁,₂=(1±√49)/2
х₁,₂=(1±7)/2
х₁= -6/2= -3
х₂=8/2=4
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -3 и х=4. По графику ясно видно, что у<0 от х= -3 до х=4, то есть, решения неравенства в интервале х∈(-3, 4).
Это решение второго неравенства.
Теперь нужно на числовой оси отметить решение первого неравенства и решение второго неравенства, и найти пересечение решений, то есть, такое решение, которое подходит и первому и второму неравенствам.
Пересечение решений х∈ [-2, 4).
Это и есть решение системы неравенств.
-2 входит в интервал решений, поэтому скобка квадратная, 4 не входит, скобка круглая.
а)Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
б)Координаты пересечения параболой оси Оу (0; 12)
Объяснение:
Найти координаты точек пересечения параболы
y=-3x²+12 с осями координат.
а)Чтобы найти точки пересечения параболы с осью Ох, нужно решить квадратное уравнение:
-3x²+12=0
3x²-12=0
х₁,₂=±√144/6
х₁,₂=±12/6
х₁= -2
х₂=2
Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
б)Любой график пересекает ось Оу при х=0.
х=0
y= -3x²+12
у=0+12
у=12
Координаты пересечения параболой оси Оу (0; 12)