1) y = (2x^2 - 32 x + 32) * e^x + 32; y ' (x) = (2x^2 - 32 x + 32) ' * e^x + (2x^2 - 32x + 32) * (e^x) '= (4x-32)*e^x +(2x^2-32x +32)* e^x = e^x(4x - 32 + 2x^2 - 32x + 32) = e^x(2x^2 - 28x)=2e^x*x(x - 14); y '(x) = 0; 2e^x * x *(x - 14) = 0; e^x > 0 при всех х; тогда 2x*(14 - x) = 0; x1 = 0; x2 = 14 - стационарные точки. Определим знак производной в точке х = 15. y '(15) = 2e^15 * 15*(-1) = -30*e^15 < 0. дальше знаки чередуем, так как нет корней четной степени. y ' - + - (0)(14)х y убыв возр убывает
Точка максимума - это точка, в которой производная меняет знак с плюса на минус, то есть х = 14.
y = x^(3/2) - 9x + 19 y '(x) = 3/2 * x^(3/2 - 1) - 9= 3/2 * x^(1/2) - 9 = (3*√x)/2 - 9; 3√x / 2 - 9 = 0; 3√x / 2 = 9; √x / 2 = 3; √x = 6; x = 6^2; x = 36. единственная стационарная точка. Убедимся, что она является точкой минимума. Для этого проверим знак производной слева от нее, например в точке х =0 (просто так удобнее). y '(0)= 3 *√0 / 2 - 9 = - 9 < 0. y ' -- + 36x у убывает возрастает. Производная поменяла знак с минуса на плюс, то есть х = 36 - точка минимума. Подставим в формулу функции значение х = 36 и найдем наименьшее значение функции. y(наим)=36^(3/2) - 9*36 + 19 = 6^3 - 324 + 19= 216 - 324 + 19 = - 89
Вспомним, что процентная концентрация или массовая доля w растворенного вещества Х в растворе - это отношение массы растворенного вещества m(Х) к массе раствора m(раствора): w = m(X) / m(раствор) Она часто задается в процентах: w = m(X) / m(раствор) * 100%
1 случай. Масса m1 кислоты в получившемся растворе: m1 = 2 w1 + 6 w2, где w1 и w2 - массовые доли кислоты в первом (2 кг) и втором (6 кг) растворе. Массовая доля w3 кислоты в получившемся растворе равна по условию 0,36. И она же равна w3 = m1 / (2 + 6) = m1 / 8 = (2 w1 + 6 w2) / 8 = 0.36 ( [2+6] в знаменателе - это масса получившегося раствора [2 кг+6 кг])
2 случай Возьмем для определенности равные массы, равные 1 кг. Масса m2 кислоты в получившемся растворе: m2 = w1 + w2 Массовая доля w4 кислоты в полученном растворе равна по условию 0,32. И она же равна w4 = m2 / 2 = (w1 + w2) / 2 = 0.32 (2 в знаменателе - это масса получившегося раствора [1 кг + 1 кг] )
Получаем систему уравнений относительно w1 и w2: (2 w1 + 6 w2) / 8 = 0.36 (w1 + w2) / 2 = 0.32
2 w1 + 6 w2 = 2.88 w1 + w2 = 0.64
Из второго уравнения w1 = 0.64 - w2 Подставляем это выражение для w1 в первое уравнение: 2 (0,64 - w2) + 6 w2 = 2.88 1.28 - 2 w2 + 6 w2 = 2.88 1.28 + 4 w2 = 2.88 4 w2 = 1.6 w2 = 0.4 = 40% Отсюда w1 = 0.64 - w2 = 0.64 - 0.4 = 0.24 = 24%
ответ: концентрация первого раствора - 24%, второго раствора - 40%
Примечание. Во втором случае можно брать не по одному килограмму, а по х килограммов раствора. Но это дела не меняет: m2 = x w1 + x w2 w4 = m2 / (x + x) = (x w1 + x w2) / 2x = x(w1 + w2) / 2x = (w1 + w2) / 2 (х + х) - это масса получившегося раствора. Как видим, х сокращается, и получаем тот же результат: w4 = (w1 + w2) / 2
Пусть х км в час - скорость автомобиля, у км в час- скорость трактора. За 3 часа автомобиль проехал 3х км. Трактор до момента встречи ехал на 15 мин. меньше. 3 часа - 15 мин = 2 часа 45 мин =2,75 часа и проехал путь, равный 2,75у км. Транспортные средства встретились, значит проехали путь от А до В. (3х+2,75у ) км - расстояние от А до В.
Автомобиль проехал (6х+5,5у) со скоростью х км в час и затратил на путь туда и обратно (6х+5,5y)/x часов. Трактор проехал (3х+2,75у) со скоростью у км в час и затратил (3х+2,75у)/у часов. По условию трактор находился в пути на 15 мин =1/4 часа меньше. Составляем уравнение: ((6х+5,5y)/x) - ((3х+2,75у)/у)= 1/4 . Делим каждое слагаемое числителя первой дроби на х, каждое слагаемое числителя второй дроби на у: 6+5,5 (у/х) - 3(х/у) -2,75=0,25. Пусть х/у=t, тогда у/х = 1/t 3t-(5,5/t)-3=0 3t²-3t-5,5=0 6t²-6t-11=0 D=36+264=300 t=(6+√300)/12=(6+10√3)/12=(3+5√3)/6 t=(6-√300)/12 <0 и не удовлетворяет условию задачи
y ' (x) = (2x^2 - 32 x + 32) ' * e^x + (2x^2 - 32x + 32) * (e^x) '= (4x-32)*e^x +(2x^2-32x +32)* e^x = e^x(4x - 32 + 2x^2 - 32x + 32) = e^x(2x^2 - 28x)=2e^x*x(x - 14);
y '(x) = 0;
2e^x * x *(x - 14) = 0;
e^x > 0 при всех х; тогда
2x*(14 - x) = 0;
x1 = 0; x2 = 14 - стационарные точки.
Определим знак производной в точке х = 15.
y '(15) = 2e^15 * 15*(-1) = -30*e^15 < 0.
дальше знаки чередуем, так как нет корней четной степени.
y ' - + -
(0)(14)х
y убыв возр убывает
Точка максимума - это точка, в которой производная меняет знак с плюса на минус, то есть х = 14.
y = x^(3/2) - 9x + 19
y '(x) = 3/2 * x^(3/2 - 1) - 9= 3/2 * x^(1/2) - 9 = (3*√x)/2 - 9;
3√x / 2 - 9 = 0;
3√x / 2 = 9;
√x / 2 = 3;
√x = 6;
x = 6^2;
x = 36. единственная стационарная точка. Убедимся, что она является точкой минимума. Для этого проверим знак производной слева от нее, например в точке х =0 (просто так удобнее).
y '(0)= 3 *√0 / 2 - 9 = - 9 < 0.
y ' -- +
36x
у убывает возрастает.
Производная поменяла знак с минуса на плюс, то есть х = 36 - точка минимума. Подставим в формулу функции значение х = 36 и найдем наименьшее значение функции.
y(наим)=36^(3/2) - 9*36 + 19 = 6^3 - 324 + 19= 216 - 324 + 19 = - 89