М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
irenda828001
irenda828001
20.03.2020 07:37 •  Алгебра

Решите пределы (): 1) lim (x стремится к 9) (x-9)/(√(x)-3) 2) lim (x стремится к 0) (3x)/(√(1+x)- √(1-x)) 3) lim (x стремится к 4) (2-√(x))/(√(6x+1)-5) 4) lim (x стремится к 3) (x^3-27)/(√(3x)-x)

👇
Ответ:
ismailismailov11
ismailismailov11
20.03.2020
\lim_{x \to 9} \frac{x-9}{ \sqrt{x}-3 }= \lim_{x \to 9} \frac{(\sqrt{x}-3)(\sqrt{x}+3)}{ \sqrt{x}-3 }=\lim_{x \to 9} \sqrt{x}+3=6

\lim_{x \to 0} \frac{3x}{ \sqrt{1+x}-\sqrt{1-x}}= \lim_{x \to 0} \frac{3x(\sqrt{1+x}+\sqrt{1-x})}{1+x-1+x}=\lim_{x \to 0} \frac{3(\sqrt{1+x}+\sqrt{1-x})}{2} =3

\lim_{x \to 4} \frac{2- \sqrt{x}}{ \sqrt{6x+1}-5}= \lim_{x \to 4} \frac{(2- \sqrt{x})(\sqrt{6x+1}+5)}{ 6x-24} = \\ = \lim_{x \to 4} \frac{(2- \sqrt{x})(\sqrt{6x+1}+5)}{ 6(x-4)}= \lim_{x \to 4} \frac{(2- \sqrt{x})(\sqrt{6x+1}+5)}{ 6( \sqrt{x} -2)(\sqrt{x} +2)} = \\
=\lim_{x \to 4} -\frac{(\sqrt{x}-2)(\sqrt{6x+1}+5)}{ 6( \sqrt{x} -2)(\sqrt{x} +2)} = \lim_{x \to 4} -\frac{\sqrt{6x+1}+5}{ 6(\sqrt{x} +2)} = -\frac{10}{24}= -\frac{5}{12}

\lim_{x \to 3} \frac{x^3-27}{ \sqrt{3x}-x} = \lim_{x \to 3} \frac{(x-3)(x^2+3x+9)}{ \sqrt{x}( \sqrt{3}-\sqrt{x})} = \\
= \lim_{x \to 3} \frac{( \sqrt{x}-\sqrt{3})( \sqrt{x}+\sqrt{3}))(x^2+3x+9)}{ \sqrt{x}( \sqrt{3}-\sqrt{x})} = \\
= \lim_{x \to 3} -\frac{( \sqrt{3}-\sqrt{x})( \sqrt{x}+\sqrt{3}))(x^2+3x+9)}{ \sqrt{x}( \sqrt{3}-\sqrt{x})} = \\
=\lim_{x \to 3} -\frac{( \sqrt{x}+\sqrt{3})(x^2+3x+9)}{ \sqrt{x}} = -\frac{2 \sqrt{3}*27 }{ \sqrt{3} } =-54

4,4(24 оценок)
Открыть все ответы
Ответ:
lizamrio1
lizamrio1
20.03.2020
[подчёркнутое число обозначает, что в его записи 100 цифр]
    Запишем число 333...333 в виде произведения:
333333 = 3* 111111
Множители взаимно простые, значит искомое число Х должно делиться на оба числа: 3 и 111...111
1) Чтоб число Х делилось на 3, количество единичек в нём должно быть кратно 3.
2) Чтоб число Х делилось на 111...111, число Х должно содержать целое число групп по сто единичек: одну, две, три четыре и так далее.
    Наименьшее из чисел, которое удовлетворяет этим двум условиям - это 111111...111111 (300 единичек)
4,8(26 оценок)
Ответ:
NikaUayt
NikaUayt
20.03.2020
[подчёркнутое число обозначает, что в его записи 100 цифр]
    Запишем число 333...333 в виде произведения:
333333 = 3* 111111
Множители взаимно простые, значит искомое число Х должно делиться на оба числа: 3 и 111...111
1) Чтоб число Х делилось на 3, количество единичек в нём должно быть кратно 3.
2) Чтоб число Х делилось на 111...111, число Х должно содержать целое число групп по сто единичек: одну, две, три, четыре и так далее.
    Наименьшее из чисел, которое удовлетворяет этим двум условиям - это 111111...111111 (300 единичек)
4,4(9 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ