Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
В решении.
Объяснение:
1.
а) b/√7 * √7/√7 = b√7/7;
б) 5/√x *√x/√x = 5√x/x;
в) 5/3√6 *√6/√6 = 5√6/3*6 = 5√6/18;
г) 12/7√2 *√2/√2 = 12√2/7*2 = 12√2/14 = 6√2/7;
д) 1/√3 * √3/√3 = √3/3;
е) 5/4√5 * √5/√5 = 5√5/4*5 = 5√5/20 = √5/4.
2.
а) 2/(√c+y) * (√c+y)/(√c+y) = 2(√c+y)/(c+y);
б) 6/(√5 + 1) * (√5 - 1)/(√5 - 1) =
в знаменателе развёрнутая разность квадратов, свернуть:
= 6(√5 - 1)/(√5)² - 1² =
= 6(√5 - 1)/(5 - 1) =
= 6(√5 - 1)/4 =
= 3(√5 - 1)/2;
в) с/(√a - √c) * (√a + √c)/(√a + √c) =
в знаменателе развёрнутая разность квадратов, свернуть:
= c(√a + √c)/(√a)² - (√c)² =
= c(√a + √c)/(a - c);
г) k/(x + √k) * (x - √k)/(x - √k) =
в знаменателе развёрнутая разность квадратов, свернуть:
= k(x - √k)/(x² - (√k)²) =
= k(x - √k)/(x² - k);
д) 5/(√13 + √3) * (√13 - √3)/(√13 - √3) =
в знаменателе развёрнутая разность квадратов, свернуть:
= 5(√13 - √3)/(√13)² - (√3)² =
= 5(√13 - √3)/(13 - 3) =
= 5(√13 - √3)/10 =
= (√13 - √3)/2;
е) 6/(5 - 2√6) * (5 + 2√6)/(5 + 2√6) =
в знаменателе развёрнутая разность квадратов, свернуть:
= 6(5 + 2√6)/(5² - (2√6)²) =
= 6(5 + 2√6)/(25 - 4*6) =
= 6(5 + 2√6)/1 =
= 6(5 + 2√6).
Для удобства написания использовал х вместо альфы. При раскрытии единицы использовал основное тригонометрическое тождество. А при раскрытии синуса использовал формулу двойного угла.