Пусть первая бригада выполняет n заказов в час. Время выполнения одного заказа первой бригадой составит 1/n часов Скорость работы второй бригады - m заказов в час, и время выполнения одного заказа 1/m часов Время выполнения одного заказа на 3 часа меньше 1/n = 1/m + 3 При совместной работе скорость выполнения составит n+m заказов в час А время выполнения одного 1/(n+m) = 2 часа
решаем совместно эти уравнения n = 1/(1/m+3) = 1/(1/m + 3m/m) = m/(1+3m) n+m = 1/2 m/(1+3m) + m = 1/2 m + m(1+3m) = 1/2(1+3m) 3m^2 + 2m = 1/2 + 3/2m 6m^2 + m -1 = 0 m = -1/2 - отрицательный корень не годится m = 1/3 заказа в час - а вот это годится И это ответ :)
Потому что ответом для выражения корень второй степени (квадратный то есть) может быть либо число положительное, либо отрицательное. к примеру, корень квадратный из 4, равен +2, или минус 2. -2*(-2)=4 так как минус умноженный на минус, даст плюс. 2*2=4, здесь тоже понятно, плюс на плюс- дает плюс.
то есть, нет такого числа, которое при умножении на само себя четное количество раз, даст отрицательное значение.
а вот в случае корней с нечетными степенями, 3 (кубический корень), 5 ,7,9, 11, 121... такое возможно, потому что решением корень кубический из -8, будет число -2, действительно: -2*(-2)*(-2)=4*(-2)= -8
Скорость работы второй бригады - m заказов в час, и время выполнения одного заказа 1/m часов
Время выполнения одного заказа на 3 часа меньше
1/n = 1/m + 3
При совместной работе скорость выполнения составит n+m заказов в час
А время выполнения одного
1/(n+m) = 2 часа
решаем совместно эти уравнения
n = 1/(1/m+3) = 1/(1/m + 3m/m) = m/(1+3m)
n+m = 1/2
m/(1+3m) + m = 1/2
m + m(1+3m) = 1/2(1+3m)
3m^2 + 2m = 1/2 + 3/2m
6m^2 + m -1 = 0
m = -1/2 - отрицательный корень не годится
m = 1/3 заказа в час - а вот это годится
И это ответ :)