так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6
Парабола: y = ах^2 + bx + c
1)
A: 16a - 4b + c = 0
B: 4a + 2b + c = 0
C: 0a + 0b + c = -3
<=>
c = -3
16a - 4b = 3
4a + 2b = 3 (* 2) и сложим
<=>
c = -3
4a - 2b = 3
24a = 9
<=>
c = -3
a = 3/8
b = 2a - 3/2 = -3/4
=> Уравнение: y = 3/8 x^2 - 3/4 x - 3
2) (Другой
Используем Th Виета
x1 + x2 = -b/a
x1 * x2 = c/a
что означает, что a x^2 + bx + c = 0 ?
это значит, что х - корень
т.к. в Точках A и B y = 0 => корни: 1 и 6
=> 7 = -b/a
6 = c/a
Посмотрим на 3-ю точку
a * 0 + b * 0 + c= -4
=> c = -4
=> 7 = -b / a
6 = -4/a
=> a = -2/3
b = 21/2
=> Уравнение: y = -2/3x^2 + 21/2x - 4