Пусть большее простое число из T(x) равно n.Сравним числа:n^2 и 2T(x),то есть квадрат наибольшего простого числа и удвоенную сумму простых чисел до n:
Очевидно,что все простые числа,кроме 2 нечетные,а значит T(x) меньше суммы двойки и натуральных нечетных чисел от 1 до n(так как не все нечетные числа являются простыми).
Рассмотрим данную сумму,члены которой,кроме двойки образуют арифметическую прогрессию.
Сравним 2S и n^2
Правая часть больше левой(нуля) при:
А так как S>T(X) и n^2>2S,то n^2>2T(x)
Значит и x^2>2T(x) при n,указанном выше.
Рассмотрим оставшиеся 2 варианта:
n=2 n=3
ответ:
5х-3у=11
5(7-у)-3у=11
35-5у-3у=11
35-8у=11
8у=46
у=5.75 х=7-5.75=1.25
б)2х-у=3 -2х+у=-3 3х-2х=5-3
3х-у=5 3х-у=5 х=2 у=2х-3=2*2-3=1