Имеем 4 места для размещения цифр. Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Девятку можно поставить на любое из четырёх мест На остальные места размещаем оставшиеся цифры, учитывая, что все они должны быть различны, получаем: на первое из трёх оставшихся мест можно поставить любую их 9-ти цифр (девятку нельзя, остаётся 10-1=9 цифр); на второе из оставшихся мест ставим любую из оставшихся 8-ми цифр; на третье - любую из оставшихся семи цифр. Перемножаем полученное количество расстановки: 4*9*8*7=2016 ответ: Ване придётся перебрать 2016 номеров.
S = a^2 - формула площади квадрата ("а" в квадрате) ^ - условный знак возведения в степень (а+b)^2 = a^2 + 2ab + b^2 - формула сокращённого умножения
Пусть а (см) - сторона второго квадрата, тогда а+13 (см) - сторона первого квадрата. Площадь первого квадрата на 351 кв.см больше площади второго квадрата. Уравнение: (а+13)^2 - a^2 = 351 a^2 + 2a*13 + 13^2 - a^2 = 351 26a + 169 = 351 26a = 351 - 169 26a = 182 а = 182 : 26 а = 7 (см) - сторона второго квадрата 7 + 13 = 20 (см) - сторона первого квадрата Проверка: 20*20 - 7*7 = 400 - 49 = 351 ответ: 20 см.
(8-7)2=(1)2=1