я не буду переписывать этого удава
Замена
|x√(1 - x^2) + x| = a >= 0
√(1 + x^2) = b > 0
одз -1 ≤ x ≤ 1
получаем
(a + b)/2 *(a^2 + b^2)/2 *(a^3 + b^3)/2 ≥ (a^6 + b^6)/2 |*8
4(a^6 + b^6) - (a + b) *(a^2 + b^2) *(a^3 + b^3) ≤ 0
4(a^2 + b^2)(a^4 - a^2b^2 + b^4) - (a + b) *(a^2 + b^2) *(a^3 + b^3) ≤ 0
общий член a^2 + b^2 > 0 отбросим его
4(a^4 - a^2b^2 + b^4) - (a + b) *(a^3 + b^3) ≤ 0
преобразуем левую часть
4a^4 - 4a^2b^2 + 4b^4 - (a^4 + ab^3 + a^3b + b^4) = 3a^4 - 4a^2b^2 + 3b^4 - ab^3 - a^3b = 3a^4 + 5a^3b + 3a^2b^2 - 6a^3b - 10a^2b^2 - 6ab^3 + 3a^2b^2 + 5ab^3 + 3b^4 = a^2(3a^2 + 5ab + 3b^2) - 2ab(3a^2 + 5ab + 3b^2) + b^2(3a^2 + 5ab + 3b^2) = (a^2 - 2ab + b^2)(3a^2 + 5ab + 3b^2) = (a - b)^2(3a^2 + 5ab + 3b^2) ≤ 0
при a≥ 0 b>0 (3a^2 + 5ab + 3b^2) > 0 значит
(a - b)^2 ≤ 0
единственное решение a = b
|x√(1 - x^2) + x| = √(1 + x^2)
x^2(√(1 - x^2) + 1)^2 = (1 + x^2)
x^2(1 - x^2 + 2√(1 - x^2) + 1) = 1 + x^2
x^2 - x^4 + 2x^2√(1 - x^2) + x^2 = 1 + x^2
x^4 - x^2 - 2x^2√(1 - x^2) + 1 = 0
Замена y = √(1 - x^2) >=0
x^4 - x^2 - 2x^2√(1 - x^2) + 1 = 1 - 2√(1 - x^2) - (√(1 - x^2))^2 + 2(√(1 - x^2))^3 + (√(1 - x^2))^4 = y^4 + 2y^3 - y^2 - 2y + 1 = y^2(y^2 + y - 1) + y(y^2 + y - 1) - (y^2 + y - 1) = (y^2 + y - 1)^2 = 0
y^2 + y - 1 = 0
D = 1 + 4 = 5
y12 = (-1 +- √5)/2
1. y1 = (-1 - √5)/2 < 0 нет
2. y2 = (-1 +-√5)/2
√(1 - x^2) = (-1 + √5)/2
1 - x^2 = (-1/2 + √5/2)^
1 - (-1/2 + √5/2)^2 = x^2
1 - (-1/2 + √5/2)^2 = (√5/2 - 1/2)
x12 = +- √ (√5/2 - 1/2)
тут еще одз вспомним - √ (√5/2 - 1/2) < -1
-1 ≤ √ (√5/2 - 1/2) ≤ 1
ответ √ (√5/2 - 1/2)
если сами все не можете, то не надо таких
и сил и времени тратится часы а вы только перепишите
Объяснение:
б) (х² - 4х + 4) /( х -2) = 0 в) х² -81)/ (х² + 10х +9) = 0
(х - 2)² / (х - 2) = 0 ( х -9)( х +9) / ( х² +х +9х +9) =0
х - 2 = 0 ( х -9)( х +9) / [х ( x +1) +9( x + 1)} =0
х = 2 ( х -9)( х +9) / (x + 9) (x + 1) =0
ответ: х =2 ( x - 9)/(x + 1) =0
(x + 1) - знаменатель , не может быть = 0
х - 9= 0 х = 9 ответ: х =9
г) ( х + 2) / (х² -7х -18) = 0
(х + 2) / (х² +2х - 9х -18) = 0
( х + 2) / [ х( х +2) - 9(х+2) = 0
( х + 2) / (х +2) (х - 9) = 0
1 / (х - 9) = 0
ответ: решения не имеет, т.к. знаменатель не может быть = 0
д) (х² - 5х + 6) / (х² -9) = 0
( х² - 2 х - 3х + 6) / (х - 3) ( х + 3) = 0
[ (х ( х - 2) - 3( х - 2)] / (х - 3) ( х + 3) = 0
( х - 3) (х - 2) / (х - 3) ( х + 3) = 0
(х - 2) / ( х + 3) = 0
х - 2 = 0
х = 2
ответ: х = 2
16=2⁴ = ((√2)²)⁴ = (√2)⁸
log₈ a³ = log(√₂)⁶ a³ = 3*(¹/₆) log√₂ a = ¹/₂ log√₂ a = log√₂ a^(¹/₂)
log₁₆ a = log(√2)⁸ a = ¹/₈ log√₂ a
log√₂ a^(¹/₄) - log√₂ a^(¹/₂) = log√₂ (a^(¹/₄) : a^(¹/₂)) = log√₂ a^(⁻¹/₄) =
¹/₈ log√₂ a ¹/₈ log√₂ a ¹/₈ log√₂ a
= ⁻¹/₄ log√₂ a = -¹/₄ * 8 = -2
¹/₈ log√₂ a
ответ: -2