как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
1. sin(П-x)-cos(П/2+x)=√3
sinx+sinx=√3 (по формулам привидения)
2sinx=√3
sinx=√3/2
x=(-1)n×π/6+πn,n∈Z
2. 7cos(2x-П/3)=-3.5
cos(2x-π/3)=-1/2
2x-π/3=±2π/3+2πn,n∈Z
2x=±2π/3+π/3+2πn,n∈Z
2x=±π+2πn,n∈Z
x=±π/2πn,n∈Z
3. cos(5x-П/2)=0
5x-π/2=π/2+πn,n∈Z (частный случай)
5x=π/2+π/2+πn,n∈Z
5x=π+πn,n∈Z
x=π/5+πn/5,n∈Z
4. cos(3x-П/2)=1
3x-π/2=2πn,n∈Z
3x=π/2+2πn,n∈Z
x=π/6+2πn/3,n∈Z
5. сos(2-3x)=√2/2
cos(3x-2)=-√2/2
3x-2=±3π/4+2πn
3x=±3π/4+2+2πn
x=±π/4+2/3+2πn/3
6. cos(3П/2+x)= √3/2 (по формулам привидения)
sinx=√3/2,n∈Z
x=(-1)n×π/3+πn,n∈Z
7. sin2xcos2x+0.5=0
sin2xcos2x=-1/2 |×2
2sin2xcos2x=-1
sin4x=-1
4x=-π/2+2πn,n∈Z
x=-π/8+πn/2,n∈Z
8. 2sinxcosx=1/2
sin2x=1/2 (тригонометрические формулы двойных углов)
2x=(-1)n×π/6+2πn
x=(-1)n×π/12+πn/2
9. cosx² - sinx² = -1/2
cos2x=-1/2 (тригонометрические формулы двойных углов)
2x=±2π/3+2πn,n∈Z
x=±π/3+πn,n∈Z
вычтем из первого уравнения второе