М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Виктория58928663
Виктория58928663
01.02.2021 20:48 •  Алгебра

Вариант 4 1. составьте многочлен p(x)=p1(x)+3p2(x)-p3(x) и запишите его в стандартном виде, если: p1(x)=-7x^2+4 p2(x)=3x-2 p3(x)=-6x^2-3x 2. преобразуйте заданное выражение в многочлен стандарстного вида: а) -2/3 p^2g^2(6p^2-3/2pg+3g^2) б) (2-3p)(p+3) в) (-24pg^2+28p^2g)/(4pg) 3. выражение, используя формулы сокращенного умножения: (2+5y)(5y--1)^2 4. даны три последовательных числа, из которых каждое следующее на 6 больше предыдущего. найдите эти числа, если произведение двух крайних чисел на 96 меньше произведения большего и среднего. 5. докажите, что значение выражения 6(9x^3+2)-2(1-3x+9x^2)(1+3x) не зависит от значения переменной.

👇
Ответ:
vladshumigayoypa3u
vladshumigayoypa3u
01.02.2021
1.
p(x)=p_1(x)+3p_2(x)-p_3(x)
\\\
p(x)=-7x^2+4+3(3x-2)-(-6x^2-3x)=
\\\
=-7x^2+4+9x-6+6x^2+3x=-x^2+12x-2

2.
- \frac{2}{3} p^2g^2(6p^2- \frac{3}{2}pg+3g^2)=- 4 p^4g^2+ p^3g^3- 2 p^2g^4
(2-3p)(p+3)=2p+6-3p^2-9p=6-7p-3p^2
\frac{-24pg^2+28p^2g}{4pg} =\frac{4pq(-6g+7p)}{4pg} =7p-6g

3.
(2+5y)(5y-2)-(4y-1)^2=25y^2-4-(16y^2-8y+1)=
\\\
=25y^2-4-16y^2+8y-1=9y^2+8y-5

4.
Если х - второе число, то (х-6) - первое число, (х+6) - третье число. Составляем уравнение:
(x-6)(x+6)=x(x+6)-96
\\\
x^2-36=x^2+6x-96
\\
6x=60
\\\
x=10
\\\
x-6=10-6=4
\\\
x+6=10+6=16
ответ: 4, 10 и 16

5.
6(9x^3+2)-2(1-3x+9x^2)(1+3x)=54x^3+12-2(1+27x^3)=
\\\
=54x^3+12-2-54x^3=10
4,5(90 оценок)
Открыть все ответы
Ответ:
mivaniuk
mivaniuk
01.02.2021
a)
log_{0.5} ( x^{2} -3x)=-2

ОДЗ:
x^2-3x\ \textgreater \ 0

x(x-3)\ \textgreater \ 0
 
    +              -                +
---------(0)----------(3)-------------
///////////                  ////////////////

x ∈ (- ∞ ;0) ∪ (3;+ ∞ )

log_{0.5} ( x^{2} -3x)= log_{0.5} 0.5^{-2}

log_{0.5} ( x^{2} -3x)= log_{0.5} 4

x^{2} -3x= 4

x^{2} -3x-4=0

D=(-3)^2-4*1*(-4)=9+16=25=5^2

x_1= \frac{3+5}{2}=4

x_2= \frac{3-5}{2}=-1

ответ: -1; 4

b)
log^2_{2} (x-2)- log_{2} (x-2)=2

ОДЗ:

x-2\ \textgreater \ 0

x\ \textgreater \ 2

log^2_{2} (x-2)- log_{2} (x-2)-2=0

Замена:  log_{2} (x-2)=t

t^2-t-2=0

D=(-1)^2-4*1*(2)=1+8=9

t_1= \frac{1+3}{2}=2

t_2= \frac{1-3}{2}=-1

log_{2} (x-2)=2   или   log_{2} (x-2)=-1

x-2=4       или       x-2=0.5

x=6         или        x=2.5

ответ:  2,5;  6
 
c)
log_{3} ( x^{2} +2x)\ \textless \ 1

ОДЗ:
x^{2} +2x\ \textgreater \ 0

x(x+2)\ \textgreater \ 0
 
    +              -                +
---------(-2)----------(0)-------------
///////////                  ////////////////

x ∈ (- ∞ ;-2) ∪ (0;+ ∞ )

log_{3} ( x^{2} +2x)\ \textless \ log_{3}3

x^{2} +2x\ \textless \ 3

x^{2} +2x-3\ \textless \ 0

D=2^2-4*1*(-3)=4+12=16

x_1= \frac{-2+4}{2}=1

x_2= \frac{-2-4}{2}=-3

     +                -                  +
----------(-3)-----------(1)--------------
               /////////////////

С учётом ОДЗ получаем

ответ: (-3;-2) ∪ (0;1)

d)
log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ 2

ОДЗ:
0.1x-5.2\ \textgreater \ 0

0.1x\ \textgreater \ 5.2

x\ \textgreater \ 52

log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ log_{ \frac{1}{3} } \frac{1}9}

0.1x-5.2\ \textless \ \frac{1}9}

0.1x\ \textless \ \frac{1}9} +5 \frac{1}{5}

0.1x\ \textless \ \frac{5}{45} +5 \frac{9}{45}

0.1x\ \textless \ 5 \frac{14}{45}

\frac{1}{10} x\ \textless \ \frac{239}{45}

x\ \textless \ \frac{239}{45} *10

x\ \textless \ 53 \frac{1}{9}

С учётом ОДЗ получаем

ответ: (52;53 \frac{1}{9})
4,6(50 оценок)
Ответ:
даша3648
даша3648
01.02.2021

Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.

Такие уравнения решаются разложением левой части уравнения на множители.

\[a{x^2} + bx = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (ax + b) = 0\]

Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

\[x = 0;ax + b = 0\]

Второе уравнение — линейное. Решаем его:

\[ax = - b\_\_\_\left| {:a} \right.\]

\[x = - \frac{b}{a}\]

Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.

Примеры.

\[1){x^2} + 18x = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (x + 18) = 0\]

ДОЛЖНО БЫТЬ ПРАВИЛЬНО

4,4(63 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ