М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zzzz8888
zzzz8888
21.03.2021 07:54 •  Алгебра

A)(a+2)(x+6) b)(x-3)(a-5) c)(a+4)(3a-2) d)(4-b)(b+3) e)(3-7y)(2y-8)

👇
Ответ:
педро228
педро228
21.03.2021
A) (a+2)(x+6)=ax+2x+6a+12
b) (x-3)(a-5)=ax-3a-5x+15
c) (a+4)(3a-2)=3a^2-2a+12a-8=3a^2+10a-8
d) (4-b)(b+3)=4b+12-b^2-3b=12-b^2+b
e) (3-7y)(2y-8)=62y-24-14y^2
4,4(33 оценок)
Открыть все ответы
Ответ:
курлык35
курлык35
21.03.2021
Y= 2x³ -1     d(f) = (-∞;   +∞)     e(f) = (-∞; +∞) точки   пересечения   с oy :   y = 2·0³ -1 = -1       :   a(0; -1) точки   пересечения   с ox :   2x³ -1 =0     ⇒     x³ -(∛1/2)³=0     (x-∛1/2)[x²+∛1/2  ·x +(∛1/2)²]=0       a) x=∛1/2       ⇒ b(∛1/2 ; 0       b)   x²+∛1/2  ·x +(∛1/2)²=0           x=[ -∛1/2 +/-  √[(∛1/2)² -4(∛1/2)²]   ;   d= -3(∛1/2)²< 0  ⇒                     нет пересечений     кроме   точки   b(∛1/2 ; 0)   точки   экстремума   : f'(x) = 0        6x²=0   ⇒ x=0         ⇒ y=2·0 -1=1   график :   кубическая   парабола   пересекая   координаты   в   точках         а(0; -1) и в(∛1/2 ; 0)
4,8(69 оценок)
Ответ:
Temir338
Temir338
21.03.2021
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.

Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.

Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.

Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.

Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.

А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
4,5(60 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ