Решить графически уравнение вида f(x)=g(x), значит построить графики двух функций у=f(x) и у=g(x) и найти точки пересечения этих графиков.
1) Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=9. Это прямая проходит через точку (0;9) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -3 и в точке, у которой первая координата по оси х равна 3. О т в е т. х=-3; х=3.
2) Аналогично
Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=4. Это прямая, проходит через точку (0;4) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -2 и в точке, у которой первая координата по оси х равна 2. О т в е т. х=-2; х=2.
1) скорее всего в задании опечатка: sin52'cos22'-cos52'sin22'=sin(52-22)=sin30=0.5
2)Преобразуйте sin4a-sin2a в произведение, по формуле разности синусов: 2cossin=2cos3α*sinα
3)Установите соответствие между тригонометрическими функциями (А-В) и их числовыми значениями(1-4), если sina=3/5 и п/2п A.cosa 1) (-1)*1/3 Б.ctga 2)(-24/25) В.sin2a 3)(-4/5) 4) 4/5
решение: п/2<α<п - угол принадлежит 2 четверти⇒ cos x отрицательный cosx= -√(1-sin²x)= -√1-9/25= -√16/25= -4/5 ctgx= sin2x=2sinx cosx= - 2=-24/25
4)Вычислите cos210' и cos15' cos210=cos(180+30)=-cos30= - cos15=cos(45-30)=cos45*cos30+sin45*sin30=