М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
epoluektova
epoluektova
02.07.2020 01:21 •  Алгебра

5sin^2+12sinхсоsх+6cоs^2=0 сейчас на экзамене

👇
Ответ:
ханито
ханито
02.07.2020

разделим обе части на  cos^2x    это однородное ур 2 степенги

5tg^2x+12tgx+6=0

D=144-120=24

VD=V24=V(4*6)=2V6

tgx=(-12-2V6)/10=(-6-V6)/5                    x= - arctg(6+V6)/5 +pi n    

tgx=(-6+V6)/5                                             x= - arctg (6-V6)/5 +pi n   neZ

4,4(17 оценок)
Открыть все ответы
Ответ:
Нолик27
Нолик27
02.07.2020
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки.
Решаем две системы
1) \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq 0}} \right. \\ \\ \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq log_{5x-9}1}} \right.
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
2) \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq 0}} \right. \\ \\ \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq log_{5x-9}1}} \right.

решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т.  2 а) х≥20/11.

б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11

О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)
4,8(26 оценок)
Ответ:
peschanskaakris
peschanskaakris
02.07.2020
Дана функция:y=x^2+2x-8

Что бы построить график данной функции, исследуем данную функцию:

1. Область определения:
Так как данная функция имеет смысл при любом х. То:
D(y)=(-\infty,+\infty)

2. Область значения:
Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.

Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0):
\displaystyle E(y)=\left[- \frac{D}{4a},+\infty\right) - где D дискриминант.

Найдем дискриминант:
D=b^2-4ac=4+32=36

Теперь находим саму область:
\displaystyle E(y)=\left[-\frac{36}{4},+\infty \right)=[-9,+\infty)

3. Нули функции:
Всё что требуется , это решить уравнение.

\displaystyle x^2+2x-8=0\\\\x_{1,2}= \frac{-2\pm \sqrt{36} }{2} = \frac{-2\pm6}{2}=(-4),2

Следовательно, функция равна нулю в следующих точках:
(2,0)\\(-4,0)

4. Зная нули функции, найдем промежутки положительных и отрицательных значений.
Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
(-\infty,-4) \rightarrow +\\(-4,2)\rightarrow -\\(2,+\infty)\rightarrow +

То есть:
f\ \textgreater \ 0 \rightarrow (-\infty,-4)\cup(2,+\infty)\\f\ \textless \ 0\rightarrow (-4,2)

5. Промежутки возрастания и убывания.
Для этого найдем вершину параболы:
\displaystyle x_{\text{Bep.}}=- \frac{b}{2a} =- \frac{2}{2} =-1\\\\y_{\text{Bep.}}=(-1)^2+2\cdot(-1)-8=-9

Промежуток убывания:
(-\infty,-1]

Промежуток возрастания:
[-1,+\infty)

Если вы изучали понятие экстремума, то:
---------------------------------------------------------------
6. Экстремум функции.
Так как а>0 и функция квадратичная. То вершина является минимумом данной функции.
Следовательно:
y(x)_{\min}=y(-1)=-9
---------------------------------------------------------------
7. Ось симметрии

Зная вершину, имеем следующее уравнение оси симметрии:
x=-1

Основываясь на данных, строим график данной функции. (во вложении).

Плстройте график функции y=x в квадрате +2x-8
4,7(12 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ