М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tiomashash
tiomashash
27.11.2020 05:03 •  Алгебра

Доказать что произведение многочленов a(во второй степени)+2ab+4b(во второй степени) и a-2b равно частному от деления многочлена 5a(в четвёртой степени)b-40ab(в четвёртой степени) на одночлен 5ab

👇
Ответ:
Gregory15
Gregory15
27.11.2020
(5a^4b - 40ab^4)/5ab= 5ab (a^3 - 8b^3)/5ab=(a-2b)(a^2+2ab+4b^2)
4,4(67 оценок)
Открыть все ответы
Ответ:
Действительные числа делятся на:
1) Положительные (8; 17), отрицательные (-3; -54) и 0.
2) Рациональные (1,8; 9) и иррациональные (√3; Пи).
3) Рациональные делятся на целые (-6; 4) и дробные (0,6; 1/7)
4) Целые числа могут быть натуральными (1, 56)
5) Дроби делятся на конечные (0,5; 2,17) и бесконечные (1/3=0,(3); 1/7=0,(142857) ).
6) Также дроби делятся на правильные ( меньше 1) и неправильные (больше или равно 1).
7) Ещё дроби бывают простые (33/17) и смешанные (5 1/3).
8) Иррациональные числа бывают алгебраическими, которые могут быть корнями уравнения с целыми коэффициентами (например, √7) и трансцендентными, которые не могут быть корнями (например, Пи).
9) Натуральные числа бывают простыми (5; 13), составными (6, 10) и 1, которое не простое и не составное.
10) В множестве натуральных чисел есть много интересных. Например, факториалы или совершенные числа.
Вот так мы без труда накидали десяток подмножеств действительных чисел. Если подумать, можно и ещё что-нибудь вспомнить.
4,4(96 оценок)
Ответ:
Тёна333
Тёна333
27.11.2020
1) Проверим для n=1:
11*1+1=12, на 6 делится.
2) Предположим, что при n=k предположение верно, т.е. 11k³+k делится на 6.
Докажем, что оно будет верно и при n=k+1:
11(k+1)³+(k+1) = 11k³+33k²+34k+12 = (11k³+k) + 3(11k²+11k+4)
11k³+k делится на 6 по предположению;
11k²+11k+4: при чётном k (k=2m) 44m²+22m+4 делится на 2
при нечётном k (k=2m+1) 44m²+66m+26 делится на 2
Значит 3*(11k²+11k+4) делится на 6, отсюда (11k³+k) + 3(11k²+11k+4) делится на 6, значит, предположение верно, и 11n³+n делится на 6 при любых n∈N
4,5(84 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ