М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
stydent65
stydent65
03.06.2020 08:26 •  Алгебра

Решить 1/x-1+1/2-x< _5 после x знак меньше или равно

👇
Ответ:
dextomethorphah
dextomethorphah
03.06.2020

ответ внизу на фото

Объяснение:


Решить 1/x-1+1/2-x< _5 после x знак меньше или равно
4,6(36 оценок)
Ответ:
xotmirov1
xotmirov1
03.06.2020
Для начала рассмотрим каждую дробь по отдельности:

1/x - 1:
Чтобы сложить эти две дроби, необходимо найти их общий знаменатель. В данном случае это x. Приведя дроби к общему знаменателю, получим (1 - x)/x.

1/2 - x:
Для сложения этих двух дробей также необходимо найти их общий знаменатель. Знаменатель второй дроби уже является общим, поэтому первую дробь нужно привести к знаменателю 2. Получим 1/2 - 2x/2 = (1 - 2x)/2.

Итак, у нас имеем неравенство (1 - x)/x + (1 - 2x)/2 < 5.

Чтобы решить это неравенство, сначала умножим все слагаемые на 2x, чтобы избавиться от знаменателя и сделать дробь обыкновенной:

2(x - 1) + x(1 - 2x) < 5x.

Произведем раскрытие скобок:

2x - 2 + x - 2x^2 < 5x.

Теперь объединим все слагаемые на одну сторону неравенства:

2x - 2 + x - 2x^2 - 5x < 0.

Сокращаем подобные слагаемые:

-2x^2 - 2x - 3x - 2 < 0.

-2x^2 - 5x - 2 < 0.

Далее, найдем корни уравнения -2x^2 - 5x - 2 = 0, чтобы выяснить, как меняется знак неравенства на отрезках между корнями.

Для решения уравнения, воспользуемся формулой дискриминанта:

D = b^2 - 4ac.

Тут a = -2, b = -5, c = -2.

D = (-5)^2 - 4*(-2)*(-2)
= 25 - 16
= 9.

Так как дискриминант положительный, у уравнения есть два различных корня.

x1,2 = (-b ± √D) / 2a
= (-(-5) ± √9) / (2*(-2))
= (5 ± 3) / (-4).

Таким образом, x1 = 2/(-4) = -1/2 и x2 = 8/(-4) = -2.

Итак, мы нашли корни уравнения -2x^2 - 5x - 2 = 0.

Разобьем промежуток от -∞ до +∞ на три отрезка, используя эти корни: x < -2, -2 < x < -1/2, -1/2 < x.

Теперь возьмем по одной точке из каждого отрезка, чтобы проверить знак неравенства на каждом интервале и найти решение.

Возьмем x = -3. Подставим его в начальное уравнение:

(1 - (-3))/(-3) + (1 - 2*(-3))/2 < 5.

4/(-3) + 7/2 < 5.

(-8/6) + (21/6) < 5.

13/6 < 5.

Данное неравенство выполняется, так как 13/6 действительно меньше 5.

Теперь возьмем x = -1. Подставим его в начальное уравнение:

(1 - (-1))/(-1) + (1 - 2*(-1))/2 < 5.

2/(-1) + 3/2 < 5.

(-4/2) + (3/2) < 5.

(-1/2) < 5.

Данное неравенство также выполняется.

Наконец, возьмем x = 0. Подставим его в начальное уравнение:

(1 - 0)/0 + (1 - 2*0)/2 < 5.

1/0 + 1/2 < 5.

1/0 не имеет смысла, так как деление на ноль запрещено.

Таким образом, ответом на данное неравенство являются все значения x, которые лежат в отрезке (-∞, -2) и (-1/2, +∞).
4,5(69 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ