Согласно графика, координаты точки пересечения графиков (2; -2)
Объяснение:
1. Функция задана формулой y = 3x – 4. Принадлежат ли графику функции точки А (1;1) и В (2; 2)?
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
а) А (1;1) y = 3x – 4
1=3*1-4
1≠ -1, не принадлежит.
б)В (2; 2) y = 3x – 4
2=3*2-4
2=2, принадлежит.
2. Постройте график функции y= – 3x + 4 и укажите координаты точек пересечения графика с осями координат.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y= – 3x + 4
Таблица:
х -1 0 1
у 7 4 1
Согласно графика, координаты точки пересечения с осью Ох (4/3; 0)
Согласно графика, координаты точки пересечения с осью Оу (0; 4)
3. Постройте график зависимости y = kx, если он проходит через точку А (4; -8). Найдите угловой коэффициент k.
Нужно подставить известные значения х и у (координаты точки А) в уравнение и вычислить k:
-8=k*4
-4k=8
k= -2
Уравнение: у= -2х
Таблица:
х -1 0 1
у 2 0 -2
4. Найдите точку пересечения графиков функций y = –2 и y = –0,5x – 1.
(Постройте два графика в одной системе координат и запишите координаты точки пересечения двух графиков).
а)y = –2
График - прямая линия, параллельна оси Ох и проходит через
точку у= -2;
б)y = –0,5x – 1
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -2 0 2
у 0 -1 -2
Согласно графика, координаты точки пересечения графиков (2; -2)
Объяснение:
1) Числа образуют арифметическую прогрессию с разностью d = 1.
S = (a1+aк)/2 * n, где n - количество, равное 199-101 = 98 чисел.
По-другому формула запишется:
S = (a1 + a1 +(n-1)d)/2 * n = (2a1 + (n-1)d)/2 * n
a1 = 101, n = 98, d = 1
S = (2* 101 + 97 * 1)/2 * 98 = 149 * 98 = 14602
2) Характеристическое свойство геометрической прогрессии:
bn² = bn+1 * bn-1
bn = 2x - 3
bn-1 = x + 1
bn+1 = x + 6
(2x - 3)² = (x + 1)(x + 6) ⇒ 4x² - 12x + 9 = x² + 7x + 6 ⇒ 3x² - 19x + 3 = 0 ⇒ x² - 19/3x + 1 = 0 ⇒ x1 + x2 = 19/3 по теореме Виета.