Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
А) Каждая из команд сыграет по 15-1 = 14 игр на своём поле. Так как в каждой игре ровно одна команда играет на своём поле, то всего игр 15 * 14 = 210 (пр. умн. тут работает) б) Проще всего понять, что этот случай отличается от предыдущего тем, что вместо двух игр каждая пара играет только одну игру, поэтому всего игр в 2 раза меньше, т.е. 105. В лоб тут правило умножения не применить. Хотя, если постараться, можно: число пар равно 15*14/2 = 105 (тут пр.умн. нет), но каждая пара играет одинаковое число встреч (а именно, одну), поэтому всего матчей 105 * 1 = 105 (пр. умн. работает)
Для применения правила умножения нужно не только, чтобы из каждой "вершины" вело одинаковое число "путей", но и чтобы "пути" не вели в те "вершины", в которых мы считаем число вариантов.
cos x= t t∈[-1. 1]
t²+6t-3=0
d=36+12=48 t1=-6+4√3)/2=-3+2√3 t2=-6-4√3/2=-3-2√3 -постороний корень
сos x=-3+2√3
x=arccos(-3+2√3)+2πn
x=-arccos (-3+2√3)+2πn