М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DarvinaDark
DarvinaDark
13.12.2022 03:36 •  Алгебра

Водной урне 3 белых и 5 черных шаров,а в другой 6 белых и 6 черных шаров.из первой урны случайным образом вынимают 4 шара и опускают во вторую урну. после этого из второй урны также случайно вынимают один шар.найти вероятность того,что все шары ,вынутые из второй урны белые.

👇
Ответ:
alice1607
alice1607
13.12.2022
Результат зависит от того какие  шары извлечены из первой урны.
Имеем 4 случая ( или гипотезы)
Н₁-извлекли  3 белых и 1 черный;
Н₂- извлекли  2 белых и 2 черных;
Н₃- извлекли 1 белый и 3 черных;
Н₄-извлекли 0 белых и 4 черных.

Считаем вероятность каждой гипотезы
р(Н₁)=С³₃·С¹₅/С⁴₈=5/70;
р(Н₂)=С²₃·С²₅/С⁴₈=30/70;
р(Н₁)=С¹₃·С³₅/С⁴₈=30/70;
р(Н₁)=С⁰₃·С⁴₅/С⁴₈=5/70.
Считаем по формуле
Сⁿ(m)=n!/((n-m)!m!).

А- событие, означающее, что из второй урны вынут белый шар.
A/H₁- cобытие, означающее, что из второй  урны вынут белый шар при условии, что состоялось событие H₁, т.е из первой урны извлекли 3 белых и 1 черный. Тогда в второй урне стало 9 белых и 7 черных, всего 16 шаров. Вероятность белый шар из 16 шаров, среди которых 9 белых по формуле классической вероятности равна 9/16.
р(А/H₁)=9/16;
р(А/H₂)=8/16;
р(А/H₃)=7/16;
р(А/H₄)=6/16.

По формуле полной вероятности
р(А)=р(Н₁)·р(А/Н₁+р(Н₂)·р(А/Н₂)+р(Н₃)·р(А/Н₃)+р(Н₄)·р(А/Н₄)=
=(5/70)·(9/16)+(30/70)·(8/16)+(30/70)·(7/16)+(5/70)·(6/16)=
=(45+240+210+30)/1120=525/1120=0,46875.
О т в е т. р≈0,47.
4,5(3 оценок)
Открыть все ответы
Ответ:
anastasiabobilevich
anastasiabobilevich
13.12.2022
Для начала найдём точки экстремума, для этого вычислим производную функции и приравняем её к 0
y'=((x+2)²(x+4)+3)
Но перед этим раскроем скобки
(x+2)²(x+4)+3=(x²+4x+4)(x+4)+3=x³+4x²+4x²+16x+4x+16+3=x³+8x²+20x+19
y'=(x³+8x²+20x+19)'=3x²+16x+20
3x²+16x+20=0
D=16²-4*3*20=256-240=16
x=(-16-4)/6=-20/6=-10/3≈-3,333 - не входит в заданный отрезок [-3;2]     
x=(-16+4)/6=-2
Теперь находим значения функции на границах отрезка [-3;2] и в точке x=-2
y(-3)=(-3+2)²(-3+4)+3=1+3=4
y(-2)=(-2+2)²(-2+4)+3=3
y(2)=(2+2)²(2+4)+3=16*6+3=99
Наименьшее значение функции на отрезке [-3;2] равно у=3 при х=-2
4,4(99 оценок)
Ответ:
hjhytu
hjhytu
13.12.2022

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ