2)Дана система линейных уравнений: {4x-3y=-1 {2x+5y=6 Решите эту систему: подстановки. {4x-3y=-1 {2x+5y=6 ⇒2x=6-5y,
подставляем в первое ур-е 4x-3y= -1: 2(2x)-3y= -1 2(6-5y)-3y=-1 ⇒ 12-10y-3y= -1 ⇒ -13y = -13 ⇒y=1, тогда x= (6-5)/2=1/2 x=1/2, y=1 Проверка. {4(1/2)-3(1)=-1 {2(1/2)+5(1)=6 верно.
сложения {4x-3y=-1 {2x+5y=6
умножим обе части второго ур-я на (-2), получим {4x-3y=-1 {-4x-10y=-12
Складываем уравнения, получим: -13y=-13, ⇒y=1. Находим x, подставляя y=1 в какое-нибудь ур-е системы, например во второе: 2x+5(1)=6 ⇒2x=6-5 ⇒x=1/2. x=1/2, y=1 Проверку уже выполнили (см. выше).
дана функция у=2х3+6х2-1 найти промежутки возрастания и убывания
используем необходимое и достаточное условие монотонности функции: y=f(x) возрастает на промежутке (a,b)⇔ когда производная y¹=f¹(x) больше нуля , y¹>0; y=f(x) убывает на промежутке (a,b)⇔ когда производная y¹=f¹(x) меньше нуля , y¹<0.
Найдем производную у¹=(2х³+6х²-1)¹=6x²+12x и решим неравенство 6х²+12х>0