Задание. Какие из чисел √18,√26,√30 заключены между числами 5 и 6. Решение: Проверим, заключен ли между числами 5 и 6 число √18, т.е., оценивая в виде двойного неравенства, получим Возведем все части неравенства в квадрат, будем иметь Отсюда следует, что число √18 не заключен между числами 5 и 6, т.к. неравенство 25<18 не верное.
Проверим теперь для √26, т.е. . Возведя все части неравенства в квадрат, получим . Неравенства выполняются, следовательно, число √26 заключен между числа 5 и 6.
Проверим теперь для √30, то есть, . Возведя все части неравенства в квадрат, получим: . Видим, что неравенства правильны, следовательно, число √30 заключен между числа 5 и 6.
1. Прямоугольник - это параллелограмм, у которого все углы прямые.
2. Диагонали прямоугольника равны. Пусть ABCD - прямоугольник. В нем проведены диагонали AC и BD. Рассмотрим ΔBAD и ΔCDA. В них: 1. ∠BAD = ∠CDA = 90 2. AB = CD (как противолежащие стороны параллелограмма) 3. AD - общий катет Получаем, что ΔBAD = ΔCDA по 2 сторонам и углу между ними. Отсюда следует, что гипотенузы этих треугольников тоже равны. А т.к. гипотенузы и есть диагонали прямоугольника, то получили AC = BD. Что и требовалось доказать
расстояние 96 км; скорость течения --- 5 км/час; время против течения --- ?,час, но на 10>, чем по течению; собств. скорость лодки ? км/час Решение. Х км/час скорость лодки в неподвижной воде ( собственная скорость ); (Х - 5) км/час скорость против течения; 96/(Х-5) час время, затраченное против течения; (Х + 5) км/час скорость по течению; 96/(Х+5) час время, затраченное по течению; 96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию; приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25) и умножим на него все члены уравнения: 96(Х+5) - 96*(Х-5) = 10*(X^2 - 25); 96Х + 96*5 - 96Х + 96*5 = 10X^2 - 250; 10Х^2 = 1210; X^2 = 121; Х = 11(км/час). Отрицательную скорость ( второй корень уравнения) а расчет не принимаем! ответ : Скорость лодки в неподвижной воде 11 км/час. Проверка: 96:(11-6) - 96:(11+6) = 10; 10 = 10
Решение:
Проверим, заключен ли между числами 5 и 6 число √18, т.е., оценивая в виде двойного неравенства, получим
Возведем все части неравенства в квадрат, будем иметь
Отсюда следует, что число √18 не заключен между числами 5 и 6, т.к. неравенство 25<18 не верное.
Проверим теперь для √26, т.е.
Проверим теперь для √30, то есть,
ответ: √26 и √30.