Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Смотри объяснение
Объяснение:
1. а) Нам нужно раскрыть скобки. Используем формулу разности квадратов: (a+b)(a-b)=a²-b²
(2a-b)(2a+b)+b²=4a²+b²+b²=4a²+2b²
б) Здесь используем формулу квадрата разности: (a-b)²=a²-2ab+b²
(x+7)²-10x=x²-14x+49-10x=x²-24x+49
в) Снова разность квадратов, но не забываем изменить знак при вычитании:
9x²-(c+3x)(c-3x)=9x²-(c²-9x²)=9x²-c²+9x²=18x²-c²
г) Квадрат разности и смена знака:
5b²-(a-2b)²=5b²-(a²-4ab+4b²)=5b²-a²+4ab-4b²=b²-a²+4ab
2. а) На этот раз обе формулы и смена знака:
(a-c)(a+c)-(x-3)²=a²-c²-(x²-6x+9)=a²-c²-x²+6x-9
б) Теперь квадрат разности и квадрат суммы: (a+b)²=a²+2ab+b²
(x+3)²-(x-3)²=x²+6x+9-(x²-6x+9)=x²+6x+9-x²+6x-9=12x
в) Квадрат суммы и разность квадратов:
(a+3c)²+(b+3c)(b-3c)=a²+6ac+9c²+b²-9c²=a²+6ac+b²
г) Квадрат суммы и квадрат разности:
(x-4y)²+(x+4y)²=x²-8xy+16y²+x²+8xy+16y²=2x²+32y²
д) Две разности квадратов:
(x-3)(x+3)-(x+8)(x-8)=x²-9-(x²-64)=x²-9-x²+64=-9+64=55
е) И снова две разности квадратов:
(2a+1)(2a-1)+(a-7)(a+7)=4a²-1-(a²-49)=4a²-1-a²+49=3a²+48
Надеюсь, объяснил! :)