а)3(a-b)
б)20a²⁰b⁹
Объяснение:
а)(а/b-b/a)*(3ab)/(a+b)=
Сначала в скобках:
(а/b-b/a)
общий знаменатель аb, над числителями дополнительные множители:
(a*a-b*b)/ab=(a²-b²)/ab
Числитель распишем по формуле разности квадратов:
[(a-b)(a+b)]/ab;
Теперь умножение:
[(a-b)(a+b)]/ab * (3ab)/(a+b)=
числитель: [(a-b)(a+b)(3ab)]
знаменатель: (ab)(a+b)
сокращение ab и ab, (a+b) и (a+b)
=3(a-b)
в)(-2 и 1/2a³b)⁴*3 и 1/5a⁸b⁵=
переведём смешанные дроби в неправильные дроби для удобства вычислений:
=(-5/2a³b)⁴*16/5a⁸b⁵=
возведём первую скобку в четвёртую степень: (показатели степеней перемножаются)
=25/4a¹²b⁴
умножение:
=25/4a¹²b⁴*16/5a⁸b⁵=
числитель: 25a¹²b⁴*16a⁸b⁵
знаменатель:4*5
сокращение (деление) 16 и 4 на 4, 25 и 5 на 5
=5a¹²b⁴*4a⁸b⁵= степени складываются
=20a²⁰b⁹
а)3(a-b)
б)20a²⁰b⁹
Объяснение:
а)(а/b-b/a)*(3ab)/(a+b)=
Сначала в скобках:
(а/b-b/a)
общий знаменатель аb, над числителями дополнительные множители:
(a*a-b*b)/ab=(a²-b²)/ab
Числитель распишем по формуле разности квадратов:
[(a-b)(a+b)]/ab;
Теперь умножение:
[(a-b)(a+b)]/ab * (3ab)/(a+b)=
числитель: [(a-b)(a+b)(3ab)]
знаменатель: (ab)(a+b)
сокращение ab и ab, (a+b) и (a+b)
=3(a-b)
в)(-2 и 1/2a³b)⁴*3 и 1/5a⁸b⁵=
переведём смешанные дроби в неправильные дроби для удобства вычислений:
=(-5/2a³b)⁴*16/5a⁸b⁵=
возведём первую скобку в четвёртую степень: (показатели степеней перемножаются)
=25/4a¹²b⁴
умножение:
=25/4a¹²b⁴*16/5a⁸b⁵=
числитель: 25a¹²b⁴*16a⁸b⁵
знаменатель:4*5
сокращение (деление) 16 и 4 на 4, 25 и 5 на 5
=5a¹²b⁴*4a⁸b⁵= степени складываются
=20a²⁰b⁹
получим
log3(216)*log3(8)-log3(24)*log3(72)=log3(3*3*3*2*2*2)*log3(2*2*2)-log3(3*2*2*2)*log(3*3*2*2*2)=(log3(27)+log3(8))*log3(8)-(log3(3)+log3(8))*(log3(9)+log3(8))=(3+log3(8))*log3(8)-(1+log3(8))(2+log3(8))
дальше, чтобы было удобнее считать, делаем замену log3(8)=t
получаем (3+t)*t-(1+t)(2+t)=-2
т.е. ответ у нас не зависит от log3(8)
ответ: -2