решите систему уравнений методом подстановки общая скобка один пример сверху другой снизу 3x-y=-5. -5x+2y=1, т. е из одного уравнения выразить одну переменную и подставить во второе. Из двух уравнений проще выразить из первого у, т. к. коэффициент равен 1, получим
3x-y=-5
-5x+2y=1
Выражаем у из первого уравнения и ставим во второе
у=3х+5
-5х+2(3х+5)=1
Раскрываем скобки
у=3х+5
-5х+6х+10=1
Приводим подобные
у=3х+5
х+10=1
Отсюда
у=3(-9)+5
х=1-10
Или решением неравенства будет пара
у=-22
х=-9
Проверка
3(-9)-(-22)=-5
-5(-9)+2(-22)=1
Произведем вычисления
-27+22=-5
45-44=1
или
5=-5
1=1
Т. к. получили верное равенство, значит, решили правильно
ответ: х=-9 и у=-22 или (-9;-22)
Удачи!
Объяснение:
конечно, решается...
это биквадратное уравнение ("дважды" квадратное...)
вводим замену (новую переменную) а = с^2
и получаем квадратное уравнение относительно переменной а
a^2 - 26a - 160 = 0
D = 26*26 + 4*160 = 4*(169+160) = 4*329
а1 = (26 - 2V329)/2 = 13 - V329
а2 = (26 + 2V329)/2 = 13 + V329
возвращаемся к замене...
с^2 = 13 - V329 ---не имеет смысла (квадрат числа не может быть отрицательным числом...)
с^2 = 13 + V329
c1 = V(13 + V329)
c2 = -V(13 + V329)
это решение (хоть и числа "некрасивые" ---если нет ошибки в условии...)
=-73,5(х-1/14)²-37/8