Решим более глобальную задачу: А именно: научимся решать все похожие примеры, а для этого решим две аналогичные задачи:
*** Аналог задачи 1)
;
Причём значение 18 достигается выражением при x = 3, как можно легко видеть из формы последнего преобразования, и что можно вычислить, подставив x = 3 в исходное выражение.
*** Аналог задачи 2)
Причём значение 10 достигается выражением при x = 5, как можно легко видеть из формы последнего преобразования, и что можно вычислить, подставив x = 5 в исходное выражение.
Если же задачи предполагается решать при производных, то решим и таким
*** Аналог задачи 1) /// через производную ///
Рассмотрим функцмю ;
Её производная:
;
;
Производная обнуляется и меняет знак на положительной полуоси только при x = 3 , причем при x > 3 : : : f'(x) > 0 , а значит после стационарной точки функция растёт, т.е. при x = 3 достигается минимум на положительных числах.
Минимум выражения, это ;
*** Аналог задачи 2) /// через производную ///
Рассмотрим функцмю ;
Её производная:
;
;
Производная обнуляется и меняет знак на положительной полуоси только при x = 5 , причем при x > 5 : : : f'(x) > 0 , а значит после стационарной точки функция растёт, т.е. при x = 5 достигается минимум на положительных числах.
Минимум выражения, это ;
В вашем случае сумма решения обоих примеров будеи равна количеству месяцев в году.
а) y =∛( (x²-5x +4) /(x-4) ) ; т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то y =∛( (x²-5x +4) /(x-4) ) ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * * (точка с абсциссой x = 4 будет выколота на графике функции ) y = ∛ (x -1) , x ≠ 4 . --- Пересечение с координатными осями : В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy) В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox) Если x → -∞ , y → -∞ Если x → ∞ , y → ∞
б) y = ((x^2-x-6)/(x-3)) ^(1/4) y =( (x-3)(x+2) / x-3) ) ^(1/4) ; y = (x+2) /( x-3) /(x - 3) ^(1/4) ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) . точка с абсциссой x = 3 будет выколота на графике функции y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) . Пересечение с координатными осями : (0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2 (-2 ; 0) c осью ординат График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле , Удачи Вам!
Пусть первый рабочий выполняет заказ за х часов тогда второй выполняет заказ за х+4 часов
221/х столько деталей в час делает первый рабочий 221/(x+4) столько деталей делает в час второй рабочий
221/x=4 + 221/(x+4) 221/x=(221+4x+16)/(x+4) 221/x=(237+4x)/(x+4) это пропорция. произведения крайних членов пропорции равны 221(х+4)=(237+4х)х 221х+221*4=237х+4х² 4х²+16х-221*4=0 разделим все на 4 x²+4x-221=0 x1-2=(-4+-√(16+884))/2=(-4+-√900)/2=(-4+-30)/2 x=(-4+30)/2=26/2=13 второй корень не берем т.к. он <0
второй рабочий делает за час 221/(x+4)=221/(13+4)=221/17=13 деталей
*** Аналог задачи 1)
Причём значение 18 достигается выражением при x = 3, как можно легко видеть из формы последнего преобразования, и что можно вычислить, подставив x = 3 в исходное выражение.
*** Аналог задачи 2)
Причём значение 10 достигается выражением при x = 5, как можно легко видеть из формы последнего преобразования, и что можно вычислить, подставив x = 5 в исходное выражение.
Если же задачи предполагается решать при производных, то решим и таким
*** Аналог задачи 1) /// через производную ///
Рассмотрим функцмю
Её производная:
Производная обнуляется и меняет знак на положительной полуоси только при x = 3 , причем при x > 3 : : : f'(x) > 0 , а значит после стационарной точки функция растёт, т.е. при x = 3 достигается минимум на положительных числах.
Минимум выражения, это
*** Аналог задачи 2) /// через производную ///
Рассмотрим функцмю
Её производная:
Производная обнуляется и меняет знак на положительной полуоси только при x = 5 , причем при x > 5 : : : f'(x) > 0 , а значит после стационарной точки функция растёт, т.е. при x = 5 достигается минимум на положительных числах.
Минимум выражения, это
В вашем случае сумма решения обоих примеров будеи равна количеству месяцев в году.