Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Например, 154 = 11*14 Сумма квадратов 1 + 25 + 16 = 42 - делится на 3, но не делится на 9. Или 847 = 11*77 8^2 + 4^2 + 7^2 = 64 + 16 + 49 = 129 - делится на 3, но не делится на 9. Нашел простым подбором, это было нетрудно. А вот найти все решения через решение уравнений - трудно. Если число 100a + 10b + c, то должна выполняться одна из систем: { a + c = b { a^2 + b^2 + c^2 = 9k + 3 ИЛИ { a + c = b { a^2 + b^2 + c^2 = 9k + 6 ИЛИ { a + c = 11 + b { a^2 + b^2 + c^2 = 9k + 3 ИЛИ { a + c = 11 + b { a^2 + b^2 + c^2 = 9k + 6
Б) F(x) = -1/8x^8 + Sin x + C
В) F(x) = - Cos 7x + C