3)Исследование на четность-нечетность: Функция нечетная.
4)Точек разрыва нет.
5)Нахождения уравнений асимптот: y=kx+b; k= Не существует. b= так как k не удовлетворяет, то и kx тоже. Не существует.
Асимптот нет.
6)Исследование на монотонность функции и экстремумы: x=0 - критическая точка. При x<0, f`(x)>0; ⇒ f(x) возрастает; При x>0 f`(x)>0; ⇒ f(x) возрастает; Так как знак при переходе через критическую точку не меняется, она не является точкой экстремума. Монотонно возрастает.
7)Исследование на выпуклость-вогнутость: x=0 - точка перегиба. При x<0, f(x)<0; ⇒ Выпуклая. При x>0, f(x)>0; ⇒ Вогнутая.
Пусть первому на выполнение работы отдельно нужно (х) часов второму --- (х-6) часов тогда за 1 час первый перевозит (1/х) часть зерна, за 4 часа --- (4/х) часть второй --- (1/(х-6)) часть зерна, за 4 часа --- (4/(х-6)) часть зерна вместе они за 4 часа перевозят все зерно, т.е. ЦЕЛОЕ --- единицу отсюда уравнение: (4/х) + (4/(х-6)) = 1 (4х-24 + 4х) / (х(х-6)) = 1 8х - 24 = x^2 - 6x x^2 - 14x + 24 = 0 по т.Виета корни (2) и (12) первый корень не имеет смысла, т.к. один грузовик не может перевести все зерно быстрее (за 2 часа), чем два грузовика вместе (за 4 часа) ответ: первому потребуется на перевозку зерна в одиночестве 12 часов, второму 6 часов. ПРОВЕРКА: первый за час перевозит (1/12) часть зерна, за 4 часа --- в 4 раза больше (4/12 = 1/3) второй за час перевозит (1/6) часть зерна, за 4 часа --- (4/6 = 2/3) вместе за 4 часа они перевезут (1/3)+(2/3) = 1 --- ВРОДЕ ТАК)))
Обозначим друзей 1, 2, 3, 4, 5. 1 может взять любую шляпу из 2, 3, 4, 5 - всего 4 варианта. Допустим, 1 взял шляпу 2. Тогда 2 может взять любую из 1, 3, 4, 5. Если 2 берет шляпу 1, то для 3, 4 и 5 остаются шляпы 3, 4, 5. Они могут взять каждый чужую шляпу такими или 534. Если 2 берет шляпу 3, то для 3, 4, 5 остаются шляпы 1, 4, 5. Они могут взять каждый чужую шляпу такими Если 2 берет шляпу 4, то для 3, 4, 5 остаются шляпы 1, 3, 5. Они могут взять каждый чужую шляпу такими Если 2 берет шляпу 5, то для 3, 4, 5 остаются шляпы 1, 3, 4. Они могут взять каждый чужую шляпу такими Всего 11 вариантов, если 1 берет шляпу 2. Точно такие же варианты будут, если 1 возьмет шляпу 3, 4 или 5. Только надо поменять местами эту шляпу со шляпой 2. Поэтому всего получается 4*11 = 44 варианта.
1)Область определения функции: D(x)∈R;
2)Область значений функции: E(y)∈R;
3)Исследование на четность-нечетность:
Функция нечетная.
4)Точек разрыва нет.
5)Нахождения уравнений асимптот:
y=kx+b;
k=
Не существует.
b=
Асимптот нет.
6)Исследование на монотонность функции и экстремумы:
x=0 - критическая точка.
При x<0, f`(x)>0; ⇒ f(x) возрастает;
При x>0 f`(x)>0; ⇒ f(x) возрастает;
Так как знак при переходе через критическую точку не меняется, она не является точкой экстремума.
Монотонно возрастает.
7)Исследование на выпуклость-вогнутость:
x=0 - точка перегиба.
При x<0, f(x)<0; ⇒ Выпуклая.
При x>0, f(x)>0; ⇒ Вогнутая.
8)Нули функции:
9)График во вложении!!