В решении.
Объяснение:
Составьте математическую модель задачи и решите ее:
Катер 30 км против течения реки и 12 км по течению за то же время, за которое он может пройти по озеру 44 км. Определите скорость катера по озеру, если скорость течения реки составляет 2 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера (по озеру).
х + 2 - скорость катера по течению.
х - 2 - скорость катера против течения.
44/х - время катера по озеру.
12/(х + 2) - время катера по течению.
30/(х - 2) - время катера против течения.
По условию задачи уравнение (математическая модель):
12/(х + 2) + 30/(х - 2) = 44/х
Умножить все части уравнения на х(х - 2)(х + 2), чтобы избавиться от дробного выражения:
12*х(х - 2) + 30*х(х + 2) = 44*(х² - 4)
12х² - 24х + 30х² + 60х = 44х² - 176
42х² - 44х² + 36х + 176 = 0
-2х² + 36х + 176 = 0/-2
х² - 18х - 88 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =324 + 352 = 676 √D=26
х₁=(-b-√D)/2a
х₁=(18-26)/2
х₁= -8/2 = -4, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(18+26)/2
х₂=44/2
х₂=22 (км/час) - скорость катера по озеру.
Проверка:
30/20 + 12/24 = 1,5 + 0,5 = 2 (часа);
44/22 = 2 (часа);
2 = 2, верно.
* * * * * * * * * * * * * * * * * * * * * *
Числа x, y, z образуют (в указанном порядке) геометрическую прогрессию; числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию, а числа x, y+10 и z+80 (в указанном порядке) – также геометрическую прогрессию. Найдите x, y и z.
ответ: 5 ; 15 и 45 или 5/9 ; -25/9 и 125/9 .
Объяснение: * * * x ; x*q ,x*q² , x≠0 * * *
y =x*q ; z =x*q², где q знаменатель геометрической прогрессии
числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию , значит y+10 =(x+z)/2⇔ 2(y+10) =x+z ⇔(символ эквив)
2(x*q+10) = x+x*q²⇔ x+x*q²- 2x*q=20⇔ x*(q-1)² =20 (1)
числа x, y+10 и z+80 (в указанном порядке) – также геометрическую прогрессию,следовательно (y+10)² = x(z+80) ⇔(x*q+10)² = x(xq²+80) ⇔
x²*q²+20x*q+100 = x²q²+80x ⇔20x*q+100 =80x⇔x*q+5 =4x ⇔
x*(4-q) = 5 (2)
первое уравнение (1) разделим на уравнение (2) получаем
x*(q-1)²/ x*(4-q) =20/5 ⇔(q-1)²/ (4-q) =4 ⇔ q²-2q+1 =16 -4q
q²+2q- 1 5 =0 ⇒ q =3 ; q = - 5
a) q = 3 ⇒ x = 5/(4-q) = 5/(4-3) = 5 5 ; 15 ; 45
b) q = - 5 ⇒ x = 5/(4-q) = 5/ (4-(5)) =5/9 5/9 ; -25/9 ; 125/9