Пусть Х км/ч- скорость по течению, а У км/ч - скорость против течения 8/Х- время по течению 3/у - время против течения (Х-2) собственная скорость (У+2) собственная скорость 45 мин=45/60 ч =3/4 ч Составим систему уравнений:
{8/Х+3/у=3/4. ⇒ { 8/Х+3/у=3/4 {(Х-2)=(у+2). {Х=у+4 Подставим Х=у+4 в 1-е уравнение : Получим 8/(у+4)+3/у=3/4 Приведём к общему знаменателю, получим: 32у+12у+48=3у²+12у -3у²+32у+48=0 Умножим на (-1) 3у²-32-48=0 Д=√1600=40 У1=(32+40)/6=12 км/ч - скорость против течения У2=(32-40)/6=(-8/6) - не является корнем Х=у+4=12+4=16 км/ч - скорость по течению
v₁ = (-b+√D)/2a = (44+40):6 = 14 (км/ч) v₂ = (-b-√D)/2a = (44-40):6 = 2/3 (км/ч) - не удовлетворяет условию, так как скорость лодки не может быть меньше скорости течения. (чисто математически, если у лодки будет скорость 2/3 км/ч, то она тоже пройдет 8+3=11 км за 45 минут, только последние 3 км она будет двигаться по течению, несмотря на все свои попытки двигаться против..))) Смысла в таком движении точно никакого..))
x/3 = -
x = -
б) 2(1 - cos^2x ) + 5Cos x -4 = 0
2 - 2Cos^2x +5Cosx -4=0
-2Cos^2x +5Cosx -2 = 0
2Cos^2x -5Cosx +2 = 0
решаем как квадратное
D = b^2 -4ac = 25 - 16= 9
Cosx = 2 ( нет решений)
Cos x = 1/2, x = +-