1) точки пересечения x^3=x x^3-x=0 x(x^2-1)=0 x=0 x^2=1 x=-1 x=1 так как эти точки принадлежат прямой у=х то в них у=х то есть (-1,1) (0,0) (1,1) 2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1 если х будет > х^3 значит прямая будет выше 2.1) x<-1 возьмем х из этого интервала например х=-2 x^3=-8 x>x^3 значит на этом интервале прямая выше 2.2) -1<x<0 например х=-0,5 x^3=-0,125 x<x^3 прямая ниже 2.3) 0<x<1 например х=0,5 x^3=0,125 x>x^3 прямая выше 2.4) x>1 например х=2 x^3=8 x<x^3 прямая выше таким образом прямая выше при x<-1 и при 0<x<1
Y=4-x² 1. ОДЗ: x∈(-∞;+∞) 2. Чётность функции: 4-х²=4-(-х)²≡4-х², ⇒ функция чётная (симметричная относительно оси ОУ). 3. Критические точки: y`=(4-x²)`=-2x=0 у(0)=4-0²=4 ⇒ уmax=4, а (0;4) - точка перегиба. x=0 y`=0 ⇒ y`(0)=0 ⇒ имеем два интервала: -∞+0-+∞ Знак интервала определили простой подстановкой значений из интервала в уравнение у`=-2x y`>0 - функция убывает. y`<0 - функция возрастает. 4. Исследование на вогнутость и выпуклость: Точка перегиба х=0 у=4-х²=0 х₁ -2 х₂=2 -∞+-2+0-2-+∞ ⇒ x∈(-∞;0) - выпуклая. x∈(0;+∞) - вогнутая. Вывод: это парабола, опущенная вниз, вершина которой поднята относительно оси ОУ на 4 единицы.