Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними второго треугольника, то такие треугольники равны.
Дано: ΔАВС и ΔА₁В₁С₁. АВ = А₁В₁, АС = А₁С₁, ∠А = ∠А₁. Доказать: ΔАВС = ΔА₁В₁С₁. Доказательство:
Наложим треугольники друг на друга так, чтобы угол А совпал с углом А₁. Тогда совпадут и лучи АВ с А₁В₁ и АС с А₁С₁. Так как АВ = А₁В₁, точки В и В₁ совпадут. Так как АС = А₁С₁, точки С и С₁ тоже совпадут. Через две точки можно провести единственную прямую, поэтому совпадут и отрезки ВС и В₁С₁. Так как треугольники совпали при наложении - они равны.
Площадь этой трапеции равнаПо условию задачи.Заметим, что треугольники ABC и BDE - подобны по 3-м углам. Угол В - общий, остальные два угла соответственно равны как углы при пересечении параллельных прямых. Коэффициент подобия равен 0,5. Так как средняя линия делит пополам отрезки АВ и BC. Значит по теореме о площадях подобных треугольниковТеперь воспользуемся первой формулой Площадь этой трапеции равнаПо условию задачи.Заметим, что треугольники ABC и BDE - подобны по 3-м углам. Угол В - общий, остальные два угла соответственно равны как углы при пересечении параллельных прямых. Коэффициент подобия равен 0,5. Так как средняя линия делит пополам отрезки АВ и BC. Значит по теореме о площадях подобных треугольниковТеперь воспользуемся первой формулой