производная=-3^2+12x+15
приравниваем производную к нулю, находим критические точки
-3^2+12x+15=0
Д=144+180=18^2
x1=-12+18/-6=-1
x2=-12-18/-6=5
Разложим квадратный трехчлен(нашу производную) на линейные множители
-3(x+1)(x-5)
На числовой оси обозначим эти критические точки, которые разобьют ее на три интервала, в каждом из которых будем смотреть какие знаки принимает производная
-15
- + -
Если знак меняется с -на+, то имеем точку минимума, с + на - -максимума
ответ: Экстремумы Хmin=-1, Хmax=5.
Объяснение:
1) разложим числитель и знаменатель на множители. Из числителя вынесем 8 как общий множитель, в знаменателе воспользуемся формулой сокращённого умножения a^2-b^2 = (a-b)(a+b). Тогда будет 8*(x+4)/((x-4)(x+4)) => 8/(x-4) учитывая что x≠-4
2) 1) 7a/(b-3) и b/((b-3)(b+3)) => 7a*(b+3)/((b-3)(b+3)) и b/((b-3)(b+3))
Под 2) 1/(х-3)^2 и 1/((х-3)(х+3)) => (х+3)/((х-3)^2)*(х+3)) и (х-3)/((х-3)^2)*(х+3))
Номер 3)
1) t^2/(3*(t-2)) + 4/(3*(2-t)) => t^2/(3*(t-2)) — 4/(3*(t-2)) => (t^2-4)/(3*(t-2)) => (t+2)/3 с учётом t≠-2
2) a^2/((a-8)(a+8)) - a/(a+8) => (a^2-a*(a-8))/((a-8)(a+8)) => 8a/((a-8)(a+8))