

с замены:
, тогда 


- уравнение с разделяющимися переменными.
- уравнение с разделёнными переменными.
- общий интеграл новой функции.
из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: 
- общий интеграл исходного уравнения.
. Подставим в общий интеграл начальное условие:
- частный интеграл, также является решением данного дифференциального уравнения.


с замены:
, тогда 


- уравнение с разделяющимися переменными.
- уравнение с разделёнными переменными.
- общий интеграл новой функции.
из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: 
- общий интеграл исходного уравнения.
. Подставим в общий интеграл начальное условие:
- частный интеграл, также является решением данного дифференциального уравнения.
x2−x−30=0
(x+5)(x−6)=0
x+5=0 або x−6=0
x=−5 або x=6
x<−5
−5<x<6
x>6