у=-корень, х=-у
значит нечетная
ответ:
1.
а)tg(0.75pi)*cos(0.75pi)+ctg(-pi/6)*sin(pi/6) = /2 -
/2 = (
-
)/2
б) sin(870)-sin(240)*ctg(240)=0.5 + /(2*
) = 1
2.
cos^2(t) - sin^2(t)/(tg(-t)*ctg(t)) = cos^2(t) + sin^2(t)/(tg(t)*ctg(t)) = cos^2(t) + sin^2(t) = 1
3.
а)
sint = 1/2
t1 = 2pi * a + pi/6
t2 = 2pi * a + 5pi/6, где a - любое число
б)
sin(pi/3+t)=-\sqrt[2]{3}/2
t+pi/3 = 2pi * a - pi/3;
t+pi/3 = 2pi * a + 4pi/3
t1 = 2pi * a - 2pi/3
t2 = 2pi * a + pi
4.
sin(185)= ~-0.08
sin(95)= ~0.99
sin(300)= ~-0.86
sin(52)= ~0.78
sin300, sin185, sin52, sin95
5.
y = -
строишь синусоид. вместо x подставляй pi/2, pi и т.д., чтобы найти значение функции. учти, что график симметричен относительно начала координат, также функция периодична.
ИЛИ
https://math.semestr.ru/math/plot.php
6.
y=3sinx
f(-pi/4)= - 3 * \sqrt[2]{2}/2 - наим.
f(2pi/3) = 3 * /2
f(pi/2) = 3 * 1 = 3 - наиб.
мы нашли от pi/2, т.к. sin(90) > sin(120), значит 3sin(90)>3sin(120)
-3/8.
Объяснение:
1) x²-4ax+5a=0
Если х1 и х2 - корни уравнения, то по теореме Виета
х1 + х2 = 4а и х1•х2 = 5а.
2) Сумма квадратов двух корней уравнения
(х1)^2 + (х2)^2 =(х1 + х2)^2 - 2•х1•х2 = (4а)^2 - 2•5а = 16а^2 -10а.
По условию эта сумма равна 6, тогда
16а^2 -10а = 6
16а^2 -10а - 6 = 0
8а^2 - 5а - 3 = 0
D = 25 -4•8•(-3) = 25 + 96 = 121
a =(5±11):16
a1 = 1
a2 = -6:16 = -3/8
3) Проверим, что при найденных значениях уравнение имеет два различных действительных корня.
✓При а=1 уравнение примет вид x²-4x+5=0. Дискриминант отрицательный, уравнение корней не имеет.
✓При а= -3/8 уравнение примет вид
x^2 -4•(-3/8)x+5•(-3/8)=0
х^2 +3/2•х - 15/8 = 0
8х^2 + 12х - 15 = 0
D =144 + 4•8•15 = 144+480=624>0, уравнение имеет два различных корня
ответ: -3/8.
y=-корень х=-у
нечетная