Первую ещё не придумала, а вот вторая:
Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
Если надо, можно примерно вищитать:
(3*корень3)/ 4Pі = 3*1,73/4*3,14=5,19/12,56=0,41
ответ:0,41
10,4=а1+5d
5.8=a1+15d
Отнимая от 2 уравнения 1-е получаем: 10d=-4.6, откуда d=-0,46.
Найдем а1 из второго уравнения: 5,8-15*(-0,46)=12.7.
Чтобы выяснить, является ли число 6,2 членом этой прогрессии, воспользуемся формулой n-го члена арифметической прогрессии: 6,2=12.7-0,46(n-1)
-6.5=-0.46n+0.46
-6.04=-0.46n
n=13.130434782
Т.к. n- нецелое число, то число 6,2 не является членом этой арифметической прогрессии.
1/7=90/630
8/9=560/630
1/10=63/630
тогда между дробями 1/7 и 7/8 находятся дроби :
126/630=2/10
189/630=3/10
252/630=4/10
315/630=5/10
378/630=6/10
441/630=7/10
504/630=8/10