Объяснение:
1) f(x)=2e^x+3x² f'(x)=2e^x+6x
2) f(x)= x sinx. f'(x)= sinx+xcosx
3) у = (3х – 1)(2 – х) y'=3(2 – х)+(3х – 1)×(-1)=6-3x-3x+1=-6x+7
4) y=9x²-cosx y'= 18x+sinx
5) y=e^x-x^7 y'= e^x-7x^6
7) f '(1), f(x)=3x2-2x+1. f'(x)=6x-2; f'(1)=6-2=4
8) у = х²(3х^5 – 2) ; х0 = – 1. у' =(3x^7-2x²)'=21x^6-4x
y'(-1)=21+4=25
9) f '( ), f(x)=(2x-1)cosx=2cosx-(2x-1)sinx
10) f '(1), f(x)=(3-x²)(x²+6)= -2x(x²+6)+2x(3-x²) = -4x³ -6x
11) f '(1), f(x)=(x^4-3)(x²+2), f'(x)=3x³ (x²+2)+2x(x^4-3)=5x^5+6x³-6x
Пусть х - это весь товар (100%), тогда
1) 32% от х = х : 100% · 32% = 0,32х - это сумма надбавки со всего товара
2) 20% от х = х : 100% · 20% = 0,2х - это 20% всего товара
40% от 0,2 = 0,2х : 100% · 40% = 0,08х - сумма надбавки с 20% товара.
3) 100% - 20% = 80% - остальная часть товара, которую продают с другой (искомой) надбавкой k%
80% от х = х : 100% · 80% = 0,8х - это 80% всего товара
k% от 0,8x = 0,8х : 100% · k% = 0,008kх - сумма надбавки с 80% товара.
Уравнение:
0,08х + 0,008kx = 0,32x
0,008kx = 0,32x - 0,08х
0,008kx = 0,24x
при х≠0 получаем:
0,008k = 0,24
k = 0,24 : 0,008
k = 240 : 8
k = 30%
С 30%-ой надбавкой должен продать торговец оставшийся товар.
ответ: 30%
Y'=1-9/x^2
1-9/x^2=0
9/x^2=1
x^2=9
x=+-3
Нашему промежутку подходить только +3
F(3)=3+3=6
F(1)=1+9=10
yнаиб=6
унаим=10