2. x^2-2xy-y^2=7
x-3y=5
x^2-2xy-y^2=7
x=5+3y
(5+3y)^2-2y(5+3y)-y^2=7
25+30y+9y^2-10y-6y^2-y^2=7
2y^2+20y+18=0 |:2
y^2+10y+9=0
D=100-26=64
y1=-10+8/2=-1
y2=-10-8/2=-9
при y=-1
x-3*(-1)=5
x=2
при y=-9
x-3*(-9)=5
x=-22
ответ: (2;1) (-22;-9)
1) (x+3)(y-2)=0
3x-2y=9
(x+3)(y-2)=0
x=9+2y/3
(9+2y/3+3)(y-2)=0 |*3
(9+2y+9)(3y-6)=0
(18+2y)(3y-6)=0
54y+108+6y^2-12y=0
6y^2+42y-108=0 |:6
y^2+7y-18=0
D=49+72=121
y1=-7+11/2=2
y2=-7-11/2=-9
при y=-9
3x-2*(-9)=9
3x+18=9
3x=-9 |:3
x=-3
при y=2
3x-2*2=9
3x-4=9
3x=13
x=4*(1/3)
ОТВЕТ: (-3;-9); (4*(1/3);2)
1. Общее число исходов равно числу сочетаний из 36 по 2:
n = С(36,2) = 36!/(33!*2!) = 34*35*36/2 = 21420
Благоприятные исходы - это когда обе карты - тузы, т.е. выбираются из 4
тузов: m = C(4,2) = 4!/(2!*2!) = 3*4/2 = 6
Р = m/n = 6/21420 = 1/3570
2. Элементарный исход в этом опыте - упорядоченная пара чисел. Первое число
выпадает на первом кубике, второе - на втором. Множество элементарных исходов удобно представить таблицей: 11 21 31 41 51 61
12 22 32 42 52 62
13 23 33 43 53 63
14 24 34 44 54 64
15 25 35 45 55 65
16 26 36 46 56 66 Получено 36 исходов, т.е. n = 36. Из них нас интересуют только те, в которых сумма цифр равна 10. Из таблицы видно, что таких вариантов всего 3: 46, 55, 64. m = 3 Значит искомая вероятность равна: Р = m/n = 3/36 = 1/12.
3. Сначала подсчитаем вероятность того, что две карты окажутся одной масти. Пусть А - появление первой карты определенной масти, В - появление второй карты той же масти. Событие В зависит от события А, т.к. его вероятность меняется от того, произошло или нет событие А. Поэтому: Р(АВ) = Р(А)*Р(В\А) = 9/36 * 8/35 = 1/4 * 8/35 = 2/35 Т.к. в колоде 4 различные масти, то вероятность, что обе карты окажутся одной масти равна: Р = 2/35 + 2/35 + 2/35 + 2/35 = 8/35
4. Аналогично задаче № 2. Множество элементарных исходов n = 36. Из них нас интересуют только те, в которых сумма цифр равна 6. Из таблицы видно, что таких вариантов всего 5: 15, 24, 33, 42, 51. m = 5 Значит искомая вероятность равна: Р = m/n = 5/36.