Пусть т первый корень уравнения, тогда 2т второй корень уравнения. Подставив значения корней в уравнение ( т и 2т ) получаем систему 2х уравнений с неизвестными т и к. Решив ее, найдем значения первого корня и кожффициента к.
2т^2-кт+4=0 8т^2-2кт+4=0
-4т^2+2кт-8=0 8т^2-2кт+4=0
4т^2-4=0 2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6, если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2
Ууу, это вы хорошую задачку придумали :) Ну, то есть не вы придумали, но она мне очень нравится. Уравнение будет такое: , его надо решить в целых числах. Есть алгоритм решения таких уравнений, называются они линейными диофантовыми уравнениями, потому что изучал их Диофант, полагаю. Так вот, сначала нужно найти НОД коэффициентов, то есть 11 и 14, так как они взаимнопросты, то Потом на него надо сократить, при чём если не сократится, то решения нет. Но нам тут сокращать не на что. Дальше надо угадать какое-то решение, одно, любое. На самом деле, оно не угадывается, а находится по алгоритму Евклида обратным ходом (есть такая ещё теорема о линейном представлении НОДа). Ну так вот, из неё , значит одно из решений будет таким: Круто, да? Подойдёт, проверьте. Это я просто домножил на 2013 представление единицы. Вы скажете: ну это же не решение, какое-то отрицательное число! Я вам на это скажу, что вы правы. И замечу только, что общее решение в целых числах пишется так: И теперь последний шаг, нужно найти такие t, что оба эти числа натуральны. Ну и выходит, что нету таких t, может, я где-то ошибся, но вроде калькулятором пользовался. Такие дела. Предмет, на котором это проходят, называется "теория чисел", а задачки такие на олимпиадах дают, там школьники это всё уже должны знать.
2т^2-кт+4=0
8т^2-2кт+4=0
-4т^2+2кт-8=0
8т^2-2кт+4=0
4т^2-4=0
2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6,
если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2
ответ: к=6, х1=1, х2=2 или к= -6, х1= -1, х2= -2