Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
[подчёркнутое число обозначает, что в его записи 100 цифр] Запишем число 333...333 в виде произведения: 333333 = 3* 111111 Множители взаимно простые, значит искомое число Х должно делиться на оба числа: 3 и 111...111 1) Чтоб число Х делилось на 3, количество единичек в нём должно быть кратно 3. 2) Чтоб число Х делилось на 111...111, число Х должно содержать целое число групп по сто единичек: одну, две, три, четыре и так далее. Наименьшее из чисел, которое удовлетворяет этим двум условиям - это 111111...111111 (300 единичек)