Старинная . стая обезьян забавляется. восьмая часть их в квадрате резвится в лесу. остальные двенадцать кричат на вершине холма. скажи мне, сколько всего обезьян?
1) sin a = √2/2; a1 = pi/4+2pi*k; cos a1 = √2/2 a2 = 3pi/4+2pi*k; cos a2 = -√2/2 cos(60 + a1) = cos 60*cos a1 - sin 60*sin a1 = = 1/2*√2/2 - √3/2*√2/2 = √2/4*(1 - √3) = -√2(√3 - 1)/4 cos(60 + a2) = cos 60*cos a2 - sin 60*sin a2 = = -1/2*√2/2 - √3/2*√2/2 = -√2/4*(1 + √3) = -√2(√3 + 1)/4
2) sin a = 2/3; cos b = -3/4; a ∈ (pi/2; pi); b ∈ (pi; 3pi/2) cos a < 0; sin^2 a = 4/9; cos^2 a = 1-4/9 = 5/9; cos a = -√5/3 sin b < 0; cos^2 b = 9/16; sin^2 b = 1-9/16 = 7/16; sin b = -√7/4 sin(a+b) = sin a*cos b + cos a*sin b = = 2/3*(-3/4) + (-√5/3)(-√7/4) = -6/12 + √35/12 = (√35 - 6)/12 cos(-b) = cos b = -3/4
Решаем через систему уравнений Пусть х - длина, а у - ширина. Если периметр это сумма всех сторон, а в прямоугольнике стороны попарно равны, то х+х+у+у = 40 (Это первое уравнение). Теперь У нас дана разность площадей = 3. Значит разность площадей второго прямоугольника и первого даёт 3. чтобы рассчитать площадь первого достаточно х * у. А чтобы посчитать площадь второго надо (х - 3) * (у+6). (Это второе уравнение.
x + x + y + y = 40 (x - 3)*(y + 6) - (x * y) = 3
Теперь из первого уравнения выражаем У через Х. 2х + 2у = 40 2х = 40 - 2у х = 20 - у И подставляем во второе уравнение
(20 - у - 3)*(у+6) - (20 - у) * у = 3 (17 - у)*(у + 6) - 20у * у^2 =3 17y + 102 - y^2 -6y - 20y + y^2 = 3 -9y + 102 = 3 -9y = -99 y = 11 (Ширина первого прямоугольника) x = 20 - 11 = 9 (Длина первого прямоугольника) S = 11 * 9 = 99см^2
х^2/64 +12 -x=0
x^2 -64x +768=0
D=4096-3072=1024
x1=(64+32)/2=48
x2=(64-32)/2=16
Оба числа удовлетворяют условию задачи.
ответ: В стае 16 или 48 обезьян.