Решение: Обозначим объём работы при рытье котлована за 1(единицу), а количество дней за которое вырывает один экскаватор котлован за (х) дней, тогда второй экскаватор вырывает котлован за (х-10) дней Производительность работы первого экскаватора за один день равна: 1/х второго экскаватора 1/(х-10) А так как работая вместе экскаваторы вырывают котлован за 12 дней, составим уравнение: 1 : [1/(х)+1/(х-10)]=12 1 : [(х-10*1+ (х)*1)/(х*(х-10)]=12 -здесь мы привели к общему знаменателю 1: [(х-10+х)/(х²-10х)]=12 (х²-10х)/(2х-10)=12 х²-10х=12*(2х-10) х²-10х=24х-120 х²-10х-24х+120+0 х²-34х+120=0 х1,2=(34+-D)/2*1 D=√(34²-4*1*120)=√(1156-480)=√676=26 х1,2=(34+-26)/2 х1=(34+26)/2=30 (дней-первый экскаватор вырывает котлован х2=(34-26)/2=4 - не соответствует условию задачи Второй экскаватор вырывает котлован за (х-10) или: 30-10=20 (дней)
ответ: Первый экскаватор вырывает котлован за 30дней, второй экскаватор за 20 дней
Решение:
Примем скорость первого бегуна за х, тогда скорость второго бегуна х + 8.
Примем расстояние одного круга за S. Тогда первый бегун пробежал за час S - 1 км.
Тогда х = ( S - 1 ) / 1 = S - 1.
Второй бегун пробежал весь круг за 60 - 20 = 40 минут или 2/3 часа, значит его скорость равна:
х + 8 = S / ( 2/3 );
х = S / (2/3 ) - 8.
Теперь можем составить уравнение и найти расстояние 1 круга:
S - 1 = S / (2/3 ) - 8;
S - 1 = 3S/2 - 8;
2S - 2 = 3S - 16;
-2 + 16 = 3S - 2S;
S = 14 км.
Теперь, зная расстояние, можем найти скорость:
х = 14 - 1 = 13 км/ч.
ответ: Скорость первого бегуна 13 км/ч.