Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1
1. 3x + 1 = (√3x + 1)² => √3x + 1 можно принять за t, а 3x + 1 — за t². Тогда t² + t = 2 t² + t - 2 = 0 Решаем через дискриминант: D = b² - 4ac D = 1 - 4*1*(-2) = 1 + 8 = 9 = 3² x1 = (-b - √D)/(2a) = (-1 - 3)/2 = -2 x2 = (-b + √D)/(2a) = (-1 + 3)/2 = 1 Мы должны проверить оба ответа, так как икс находится под корнем: √3x + 1 = √3*1 + 1 = √4 (Корень извлекается => 1 в ответ записываем.) √3x + 1 = √3*(-2) + 1 = √-5 (Корень не извлекается из отрицательного числа => в ответ -2 не записываем.) ответ: 1. То же проделать со вторым и третьим примерами.
9x^2=2
x =+ -(корень из 2)/3
1/100 = x^2/10
x^2 =10/100
x= + - (корень из 10)/10
x^2-x =0
x(x-1)=0
x1 =0 x2=1
x^3 +4x^2 =0
x^2(x +4) =0
x1 =0 x2=-4
2x^2(x-5) =0
x1 =0 x2 =5
(x^2-4x +4)/4 +2(x^2 +2x +1)/4 =2
x^2- 4x +4 +2x^2+4x+2 =8
3x^2 =2
x = +- корень из( 2/3)