Возьмём скорость пропускания второй трубы за х, тогда скорость пропускания первой=х-4
Время, за которое первая труба заполняет 672л воды=672/х-4, а время, за которое 2 труба заполняет 560л воды=560/х. Известно что 2 труба заполняет свой резервуар на 8 минут быстрее, поэтому можно составить уравнение:
672/(х-4) - 560/х=8 домножаем всё на х(х-4) сразу укажем что х не может быть равен 4 (тк при этом идёт деление на ноль чего делать нельзя)
получаем:
672х-560(х-4)=8х(х-4)
672х-560х+2240=8х^2-32х переносим всё в правую часть и считаем
8х^2-144х-2240=0 разделим всё на 8
х^2-18х-280=0
D=18*18+4*280=324+1120=38^2
отсюда х1=(18-38)/2=-10(пост корень тк скор пропускания не может быть отриц)
х2=18+38/2=28
Значит 1 труба пропускает 28-4=24л воды а вторая-28л воды
0,2,1/4,8/5,-3/2
Объяснение:
Заметим, что если подставим вместо переменной икс тоЮ к чему она стремится, везде(кроме второго) получим неопределенность 0/0. Такая неопределенность раскрывается либо правилом Лопиталя, но это обычно неприемлимый , либо выделением общих множителей. Итак,
1)x^2-8x+16=(x-4)^2
x^2-16=(x-4)(x+4) сократим на х-4, то х-4/х+4, подставим вместо х, то к чему он стремится, и получим 0/8, а это нуль
3)x-4=(√x-2)(√x+2), сокращаем на√x-2, получаем 1/4
4) сразу ничего очевидного нет, но мы не сдаемся, вынесем из числителя х, тогда х(4-x^2)=x(2-x)(2+x) а знаменатель разложим на множители, для этого приравняем его к нулю и найдем корни любым удобным , тогда получим корни -2 и 0.5, а значит изначальный знаменатель можно расписать как 2(x+2)(x-0,5) и вот уже видим на что можно сократить (х+2). Подставим вместо икс то, к чему он стремится, тогда -8/-5=8/5
7) sinα-sinβ=2sin(α-β)/2*cos(α+β)/2, вместо альфа 2х, вместо бетта 8х, следовательно, 2sin(-3x)*cos(5x), минус из синуса выносим как нечетность, тогда -2sin(3x)*cos(5x)/4x , теперь вычисляем как стандартный предел по частям, тогда получим 3/2 да еще минус от нечестности, -3/2
2) а теперь с бесконечность делить на бесконечность, нужно разделить на старшую степень числитель и знаменатель дроби, старшая степень 4, тогда
2+1/x+1/x^4 разделим на 3/x^2+1, теперь при подстановке вместо х бесконечности получим везде нули, кроме 2/1, а значит предел равен 2
D=0 (3+k)²-16=0 3+k=-4 k=-7 <0 3+k=4 k=1