ответ:931
Объяснение:1. Заметим, что 735 имеет следующее разложение на простые множители:
735=72⋅3⋅5,
отсюда следует, что числа x, y, z состоят из тех же простых чисел 7, 3, 5:
x=7a1⋅3a2⋅5a3;
y=7b1⋅3b2⋅5b3;
z=7c1⋅3c2⋅5c3.
При этом
0≤a1,b1,c1≤2;
0≤a2,b2,c2≤1;
0≤a3,b3,c3≤1.
2. По правилу нахождения наименьшего общего кратного получим
НОК(7a1⋅3a2⋅5a3;7b1⋅3b2⋅5b3;7c1⋅3c2⋅5c3)=7max(a1,b1,c1)⋅3max(a2,b2,c2)⋅5max(a3,b3,c3).
3. Итак, задача свелась к нахождению числа решений системы уравнений:
⎨max(a1,b1,c1)=2;max(a2,b2,c2)=1;max(a3,b3,c3)=1.
Так как каждое уравнение содержит разные неизвестные, то для того чтобы найти количество решений системы, нужно найти количество решений каждого из уравнений и перемножить полученные значения.
4. Начнём с первого уравнения. Требуется найти количество целых неотрицательных чисел a1,b1,c1, удовлетворяющих уравнению max(a1,b1,c1)=2.
Напомним, что 0≤a1,b1,c1≤2. Отсюда следует, что тройка чисел a1,b1,c1 является решением уравнения, если хотя бы одно из чисел a1,b1,c1 равно 2. Для того чтобы посчитать число таких троек, вычтем из количества всевозможных троек чисел a1,b1,c1 с условием 0≤a1,b1,c1≤2 (таких троек ровно 33=27 штук) число троек a1,b1,c1 с условием 0≤a1,b1,c1≤2, в которых 2 ни разу не встречается (таких троек ровно 23=8 штук). Отсюда находим, что первое уравнение системы имеет 27−8=19 решений.
5. Точно так же поступим при подсчёте числа решений второго уравнения системы. Требуется найти количество целых неотрицательных чисел a2,b2,c2, удовлетворяющих уравнению max(a2,b2,c3)=1.
Напомним, что 0≤a2,b2,c2≤1.
Тройка чисел a2,b2,c2 является решением уравнения, если хотя бы одно из чисел a2,b2,c2 равно 1. Но только одна тройка чисел a2,b2,c2 не удовлетворяет этому условию, это тройка a2=b2=c3=0. Все остальные тройки хотя бы одну 1 содержат. Поскольку троек чисел a2,b2,c2 с условием 0≤a2,b2,c2≤1 ровно 23=8 штук, то второе уравнение системы имеет 8−1=7 решений. Точно так же получаем, что и третье уравнение системы имеет 7 решений.
6. Для того чтобы подсчитать число решений системы, а значит, и исходного уравнения, остаётся перемножить полученные нами числа. Имеем
19⋅7⋅7=931.
Итак, исходное уравнение имеет ровно 931 решение.
75 (км/час) - скорость автомобиля.
Объяснение:
Формула движения: S=v*t
S - расстояние v - скорость t – время
1)Известно, какое расстояние автомобиль и автобус, двигаясь до места встречи навстречу друг другу, это 90 км.
Известно время, которое они были в пути до встречи, это 45 минут, или 45/60 = 0,75 часа.
Можно найти общую скорость (скорость сближения):
90 : 0,75 = 120 (км/час).
2)Обозначение:
х - скорость автомобиля.
у - скорость автобуса.
90/х - время автомобиля на момент приезда в пункт В.
(90-36)/у - время автобуса на этот момент.
Время оба провели в пути равное, можем составить систему уравнений:
х + у = 120
90/х = (90-36)/у
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=120 - у
90/(120-у) = 54/у
Второе уравнение - пропорция.
Используя основное свойство пропорции, получим выражение:
90 * у = (120-у) * 54
90у=6480 - 54у
90у+54у=6480
144у=6480
у=6480/144
у=45 (км/час) - скорость автобуса.
Общая скорость известна, можно найти скорость автомобиля:
120 - 45 = 75 (км/час) - скорость автомобиля.
Проверка:
90/75 = 54/45
По основному свойству пропорции:
90*45 = 75*54
4050 = 4050, верно.
//открываем первые скобки
(х^2+5х+5х+5^2)(х+5)-(х^2+х+х+1)(х+1)=4(9х^2-5)
//далее по формуле
(х^3+5^3)-(х^3+1)=(6х)^2-5
//после раскрытия скобок получаем
5^3-1=(6х)^2-5
(6х)^2=-129
√(6х)^2=-√129
|6х|=-√129
//далее получаем систему
{6х=-(-√129) |:6
{6х=-√129 |:6
//получаем ответ
√129
х=
6
√129
х= -
6
P.S.:надеюсь все понятно...