М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
данич36
данич36
31.12.2020 00:52 •  Алгебра

Решите уравнение (х+9)^2+х(х+8)=1 (x-11)^2=(x-7)(x-9)

👇
Ответ:
mashka710
mashka710
31.12.2020
1) х^2+18x+81+x^2+8x=1
    2x^2+26x+80=0
    x^2+13x+40=0
    D=13^2-4*40=169-160=9
    X1=(-13+3)/2=-5
    X2=(-13-3)/2=-8
ответ: -5; -8
4,7(3 оценок)
Открыть все ответы
Ответ:
Meryem98
Meryem98
31.12.2020
1) 3⁹ * 7⁹ = (3*7)⁹ = 21⁹ = 21² =441
       21⁷       21⁷      21⁷
2) (1/3x -7y)² = 1/9 x² - 14/3 xy + 49y² = 1/9 x² -4 ²/₃ xy +49y²
3) (5x-3)(2x+1)-(2x-3)(5x+4)=-3
10x²-6x+5x-3-(10x²-15x+8x-12)=-3
10x²-x-3-10x²+7x+12=-3
6x=-3-9
6x=-12
x=-2
ответ: -2.

4)  4p     -      p      =   4p   -    p    =  4p - 3p   =   p    
   9p+9g    3p+3g     9(p+g)   3(p+g)    9(p+g)     9p+9g

5) (2x-5)(2x+5) - (2x+3)² ≤ 2
  4x² -25 -(4x² +12x+9)≤2
4x²-25-4x²-12x-9≤2
-12x≤2+34
-12x≤36
x≥-3

6) x³-27y³=(x-3y)(x²+3xy+9y²)

8) BD=5 см
P(ΔDBC)=30 см
P(ΔDBC)=BD +BC+DC
30=5+(BC+DC)
BC+DC=25

В ΔABC   AB=BC  и  AC=AD+AC=2DC
P(ΔABC)=AB+BC+AC=2BC+2DC=2(BC+DC)=2*25=50 (см)
ответ: 50 см.

9) (-2/5 а⁴ b)³ * (-125 a³ b)= (-8/125 a¹² b³) * (-125 a³ b)= 8 a¹⁵ b⁴

10) y/x=-3
     y=-3x
3y² -2xy+x² = 3 (-3x)² - 2x(-3x) +x² = 27x²+6x²+x² = 34x²  = -34/11 =-3 ¹/₁₁
   x²+xy-y²           x² +x(-3x)-(-3x)²       x² -3x² -9x²    -11x²

11) y=x²
     y=100
x²=100
x₁=10       (10; 100)
x₂=-10      (-10; 100)

12) 0,4 *0,8 + 0,4*1,2 =     0,4(0,8+1,2)      = 0,4 * 2  = 2*2=4
          0,6² - 0,4²           (0,6-0,4)(0,6+0,4)       0,2 * 1

13) х - 1-ый угол
     у - 2-ой угол
{x+y=180
{x-y=100

x=180-y
180-y-y=100
-2y=100-180
-2y=-80
y=40 -  2- ой угол
х=180-40=140 - 1-ый угол
140/40=3,5
ответ: 3,5

14) х - коэффициент пропорциональности.
4х+5х+9х=180
18х=180
х=10
4*10=40 - 1-ый угол
5*10=50 - 2-ой угол
9*10=90 - 3-ий угол
ответ: 40°; 50° и 90°.
4,5(75 оценок)
Ответ:
samo345
samo345
31.12.2020
1) xy'+y=0
Разрешим наше дифференциальное уравнение относительно производной
y'=- \dfrac{y}{x} - уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
\dfrac{dy}{dx} =- \dfrac{y}{x} \\ \\ \dfrac{dy}{y} =- \dfrac{dx}{x}
Интегрируя обе части уравнения, получаем
\ln|y|=\ln| \frac{1}{x} |+\ln C\\ \\ \ln|y|=\ln| \frac{C}{x}|
y= \dfrac{C}{x}- общее решение

(1-x^2) \frac{dx}{dy} +xy=0\\ \\ (1-x^2) \frac{dx}{dy} =-xy
Разделяем переменные
\dfrac{(x^2-1)dx}{x} = ydy

интегрируя обе части уравнения, получаем

-\ln|x|+ \dfrac{x^2}{2} = \dfrac{y^2}{2} +C - общий интеграл

Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует

Пример 3. x^2+y^2-2xy\cdot y'=0
Убедимся, является ли дифференциальное уравнение однородным.
(\lambda x)^2+(\lambda y)^2-2\cdot\lambda x\cdot \lambda y\cdot y'=0 |:\lambda^2\\ \\ x^2+y^2-2xyy'=0

Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену 
y=ux, тогда y'=u'x+u

Подставляем в исходное уравнение

x^2+u^2x^2-2x\cdot ux(u'x+u)=0\\ \\ x^2(1+u^2-2uu'x-2u^2)=0\\ \\ x=0\\ \\ 1-u^2-2uu'x=0\\ \\ u'= \dfrac{1-u^2}{2ux}

Получили уравнение с разделяющимися переменными

Воспользуемся определением дифференциала

\dfrac{du}{dx} =\dfrac{1-u^2}{2ux}

Разделяем переменные

\dfrac{du^2}{1-u^2} = \dfrac{dx}{x}

Интегрируя обе части уравнения, получаем

\ln\bigg| \dfrac{1}{1-u^2} \bigg|=\ln|Cx|

\dfrac{1}{1-u^2} =Cx

Обратная замена

\dfrac{x^2}{x^2-y^2} =Cx - общий интеграл

Пример 4. y''-4y'+4=0
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть y'=e^{kx}, тогда будем иметь характеристическое уравнение следующего вида:
k^2-4k+4=0\\ (k-2)^2=0\\ k_{1,2}=2

Тогда общее решение будет иметь вид:

y=C_1y_1+C_2y_2=C_1e^{2x}+C_2xe^{2x} - общее решение

Пример 5. y''+4y'-5y=0
Аналогично с примером 4)
Пусть y=e^{kx}, тогда получаем
k^2+4k-5=0\\ (k+2)^2-9=0\\ \\ k+2=\pm 3\\ k_1=1\\ k_2=-5

Общее решение: y=C_1e^{x}+C_2e^{-5x}

Найдем производную функции
y'=C_1e^x-5C_2e^{-5x}

Подставим начальные условия

\displaystyle \left \{ {{4=C_1+C_2} \atop {2=C_1-5C_2}} \right. \to \left \{ {{C_1=4-C_2} \atop {2=4-C_2-5C_2}} \right. \to \left \{ {{C_1= \frac{11}{3} } \atop {C_2=\frac{1}{3} }} \right.

y=\frac{11}{3} e^x+\frac{1}{3} e^{-5x} - частное решение
4,7(45 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ