25
Объяснение:
решения.
Выпишем несколько первых натуральных чисел кратных 5:
5, 10, 15, 20, 25, 30, 35, 40, 54, ... (далее каждое пятое натуральное число будет являться членом данной последовательности).
Пронумеруем члены последовательности:

Число, следующее за четвертым членом последовательности 25.
решения.
Воспользуемся формулой для нахождения n-го члена арифметической последовательности.

Наименьшее натуральное число делящееся на 5 это 5, т.е.
.
Далее каждое пятое натуральное число делится на 5. Значит разность арифметической прогрессии равна 5, т.е.
.
Т.к. по условию нужно найти число, следующее за a₄, то находим а₅.

х₁=2
по т. Виета х₁+х₂=-р х₁*х₂=8
х₂=8/2=4
-р=2+4=6, значит р=-6
х²-6х+8=0